Playing Dice with Soar

Soar Workshop
June 2011

John E. Laird

Nate Derbinsky, Miller Tinkerhess
University of Michigan

Supporting Software

Freedice.net [Nate Derbinsky]

— Supports correspondence dice games for humans and bots through
web interface

— Used for original development

Dice World [Miller Tinkerhess]
— Java based dice game
— Many times faster than Freedice
— Used for generating results

Both give same information available to all players

QnA [Nate Derbinsky]

— Allows easy attachment of external software device where there is an
immediate response.

— Similar to 1/O but with single access for input & output

Dice Probability Calculator [Jon Voigt & Nate Derbinsky]

— Computes simple probabilities: how likely is it for there to be 6 dice of
the same face if there are a total of 20 dice.

Dice Game Rules

Roll dice in cup
— Everyone starts with five dice
Actions

— Bid: number of dice of a given rank: six twos

— Bid and reroll: push out a subset of dice and reroll
— Exact: exactly the number of dice bid in play

— Challenge: < number of dice bid in play

— Pass: all dice are the same (must have >= 2 dice).

Lose die if lose a challenge
Last one with remaining dice wins

Key Strategic Considerations

1. If you raise too high, you might be challenged.

. If you don’t raise high enough, it will come
around again for another turn.

. Can only lose a die if you challenged or are
challenged.

. Pushing dice increases information for other
players and reduces your flexibility.

Research Issues in Dice Game

 Multi-faceted uncertainty
— What dice are under other cups?
— What did that bid indicate?
— What will the next player do after my bid?
— How combine different sources of uncertainty?

* Non-trivial cognitive challenge for humans
— Actions take seconds to minutes

* Human performance correlated with experience
— A fair amount to learn beyond the rules
— Potential for opponent modeling
— Potential for learning

Decision making under

multi-faceted uncertainty in Soar?

 Agent 1: Expected Values

— Compute expected value for the bid based on known and

unknown dice.
e |f there are 6 unknown dice, and | have 2 2’s, then there are most

likely 6/6=1+2=32’s.
 Compare bids to that expected value and classify as certain, safe,
risky, very risky.
* Similar to what we think humans do.
 Agent 2: Probability Values
— Compute probability of bids being successful.
» Uses external software calculator.
e Additional heuristics contribute to final bid:
— Don’t pass or challenge if have another good bid.

— Don’t bid and push if bid alone is a good bid.

Overall Approach

1. Propose operators for all legal actions

— Raises, raises with pushes, exact, pass, challenge

2. Tie impasse arises between operators

3. Evaluate all of the operators in selection space
Create preferences based on evaluations
1. symbolic evaluations - symbolic preferences

2. probability-based evaluations - numeric preferences

4. Decision procedure picks the best operator.

Dice Problem Space Operators

* Raise bid
— Next legal bid given last bid for each die rank (1-6)
— Special processing to determine first bid and lowest reasonable bid

* Raise, push, and roll
— Next legal bid given last bid for each die rank where there is a possible push
— Only consider pushing all relevant dice (no Valerie Bids)

* Challenge
— Previous bid, or two back if previous is a pass

* Exact (if available)
* Pass

A few more operators for initialization and counting up available dice on each
turn.

e Total dice showing for each rank
* Total dice under other players’ cups
* Totals for my dice under my cup

One-step Look-ahead
Using Selechon Problem Space

\Tle Impasse A
(on A Table) ' ,
(on B Table) i \ Prefer move(C, Table) c
(on CA) mové(C, Table) A
: . N Goal
1 [] ' \\\ ~
/ I’ T~ ~ e
-
/ \\-,l I \\ ~ \\
/ | \ \
// Evaluation = 1 Evaluation =0 Evaluation =0
valuate(move(C, Evaluate(move(C, B)) Evaluate(move(B,C))
= < G o O
¢ ™ T
copy -, / -~
o.’ / \.
k _ _ _Evaluation =1
- ~ P ~
A 7 S . 7 S
4 (onATable) \ move(C, Table) 4 (onATable)
(on B Table) i >((on B Table) I AllB]]C
\ (onCA) 7 \ (onCTable) 7
~ - _ 7’ ~ - _ 7’

— g W — g W

Page 9

Replace Look-Ahead Evaluation with
Expected-Value Calculation (Agent 1)

. Tie Impasse
Bid: 6[4] Challenge > Bid Conversion of evaluations
Challenge Challenge > Pass to preferences is done by
Bid > Pass a bunch of rules with
Pass many special cases.
Evaluation = risky Evaluation = safe Evaluation = very

Evaluate(bid: 6[4]) Evaluate(challenge) risky

O : : Evaluate(pass)

[Exposed 4’s] +
[in my cup 4’s] +

[unknown]/6 — _ Evaluatian_= risky
[# of dice bid: 6] O ComputceelEy @ compute-bid-
— difference likelihood

Bid difference

Possible Evaluations: lose, very risky, risky, safe, certain

Approach #1

Operators for Evaluation

Simple Bid (Raises)

— Compute-bid-difference [-N to +M]
— Evaluate-bid-likelihood [lose, very risky, risky, safe, certain]
Bid, Push, and Reroll

— Compute-bid-push-difference

— Evaluate-bid-likelihood
Challenge

— Compute-challenge-bid-difference
— Evaluate-challenge-bid-likelihood
— Compute-challenge-pass-likelihood
Exact

— Compute-exact-difference

— Evaluate-bid-likelihood

Pass

— Compute-pass-likelihood

Replace Look-Ahead Evaluation with
Probability Calculation (Agent 2)

i ‘lie Impasse . .
Conversion of evaluations

Challenge = .9 to preferences is done by
Bid: 6[4] = .3 a bunch of rules with
Pass = .08 many special cases.
,,’§=: -
/ - By T T -~
I N e
. Evaluation = .3 Evaluation = .9 Evaluation = very risky
Evaluate(bid: 6[4]) ﬂEvaIuate(challenge) mEvaIuate(pass) .08
/
/ TN
/ \
b/ Evaluation = .3
compute-bid- .
probability '
[using QnA]

Page 12

Approach #2

Evaluation Operators

Simple Bids (Raises)

— Compute-bid-probability

Bid, Push, and Reroll

— Compute-bid-push-probability
Challenge

— Compute-challenge-probability
— Compute-challenge-pass-likelihood
Exact

— Compute-exact-probability
Pass

— Compute-pass-likelihood

Observations

* Plays a good game!
— Doesn’t make stupid bids and is a bit unpredictable
— Tends to be conservative on bids
— Tends to be aggressive on challenges
— Has beaten human “experts”

* Bluffs when it doesn’t have a good bid.
— But doesn’t explicitly decide to bluff

* Does not always take the safest bid
— Sometimes from randomness

— Sometimes because of selection knowledge
* Don’t take certain pass when have another safe bid

Model Previous Player

 Agent tends to challenge too often.
e A player usually makes a specific bid for a reason!

* Approach:

* Add selection space operator that computes likely dice under
previous player’s cup based on most recent bid.
— Selected only if no certain bid using known dice.
* Analysis of previous player’s bid
* |terate through possible number of dice bid starting with 1 until
1. find a number that would make the bid reasonable or

2. reach a number that is very unlikely

* Use result to recalculate expected value/probabilities of possible
bids.

Results for 1000 two player games

761/239 703/297
681/319 607/393
451/549 319/681
703/297 571/429

Player against self is ~480/520

Without model, expectation-based is better.

With model, probability-based is better.

Model is more important for the probability-based agent.

Three & Four Player Games

with Models
Expectation | 414 Expectation | 246
Expectation | 289 Probability |231
Probability | 297 Expectation | 267
Probability | 256

Expectation | 384

Probability | 284

Probability | 332 Dipeason | S5

Expectation | 230
Probability | 346 Probability | 146
Probability | 331 Probability | 243

Probability | 323

Future Work:
More Opponent Modeling

e Extend evaluation calculations

— Worst case analysis for next player for my best bids
* “No matter what he has, he won’t challenge that bid.”
* Allows agent to bluff more.

— Possibly biased by next player’s last bid.

* Episodic memory:
— History of how next player responded to similar bids.
— History of what player had when made similar bid.

* Model other players to have better estimates of
hidden dice.

Future Work: Chunking and RL

Use chunking to learn (lots of) RL rules.

— Hard to write these by hand —too many cases

— Chunking works with the current agents to learn rules
that test features relevant to created preference.

— Numeric preferences are initial values for RL.

Use RL to “tune” rules learned by chunking.

— Need lots of experience.
Interesting proposal for the source of RL rules.
Initial results are not promising...

Future Work:
More Baselines and Experiments

Pure probability and expectation-based without
neuristics.

L agents with different value functions.

— Fair number of state-action pairs:

— Number of possible prior bids (>200) * possible
configurations of dice (10°) * number of next bids
(~15) = 3 Billion

Human players (from the web?).

Create (large) set of cases that can be used for
direct comparison:

— Find states where different agents make different
bids.

Nuggets and Coal m
* Nuggets:

— Two different approaches for reasoning with
probabilities in Soar that fits in “naturally”.

— Example of using opponent model.
— Leads to a competent dice player.

e Coal
— Don’t understand strengths and weaknesses.

— Has promise for generating and using RL rules but
haven’t achieved it.

