Modular Reinforcement Learning in Soar

Shiwali Mohan and John Laird

Computer Science and Engineering University of Michigan

June 16th, 2011

Shiwali Mohan and John Laird Modular Reinforcement Learning in Soar

Outline

1 Motivation

2 Modular Reinforcement Learning

3 Soar Implementation

4 Results

5 Conclusions

Shiwali Mohan and John Laird Modular Reinforcement Learning in Soar

Soar Reinforcement Learning

- Framework
 - Rl-rules assign numeric preferences to *state-operator* pairs
 - Multiple rl-rules can match any given *state-operator* pair
 - Test for different features, combination of features
 - Value of the preferences is learned using *QLearning* or *SARSA*
 - Value of numeric preferences determines which operator is selected

Soar Reinforcement Learning

- Framework
 - Rl-rules assign numeric preferences to *state-operator* pairs
 - Multiple rl-rules can match any given *state-operator* pair
 - Test for different features, combination of features
 - Value of the preferences is learned using *QLearning* or *SARSA*
 - Value of numeric preferences determines which operator is selected
- Value Function
 - Distributed amongst rl-rules
 - Updates to value function is divided equally amongst all rl-rules

Soar Reinforcement Learning

- Framework
 - Rl-rules assign numeric preferences to *state-operator* pairs
 - Multiple rl-rules can match any given *state-operator* pair
 - Test for different features, combination of features
 - Value of the preferences is learned using *QLearning* or *SARSA*
 - Value of numeric preferences determines which operator is selected
- Value Function
 - Distributed amongst rl-rules
 - Updates to value function is divided equally amongst all rl-rules
- Action Selection
 - Numeric preferences with exploration

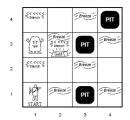
Complex Problems

- Multiple goals and subgoals
- Hierarchical solutions
 - divide learning tasks into subtasks with termination conditions
 - subtasks can be combined sequentially to solve larger tasks
 - by Dietterich (2000)¹ for the *taxi-cab* domain

¹ Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. Journal of Artificial Intelligence Research, 13(1):227-303

Complex Problems

- Multiple goals and subgoals
- Hierarchical solutions
 - divide learning tasks into subtasks with termination conditions
 - subtasks can be combined sequentially to solve larger tasks
 - by Dietterich $(2000)^1$ for the *taxi-cab* domain
- Not all problems can be divided into a series of subtasks
 - concurrent subtasks, interrupting
 - suggest contradicting actions
 - can only be partially satisfied



Modular Reinforcement Learning in Soar

¹Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. Journal of Artificial Intelligence Research, 13(1):227-303

T-Maze Example

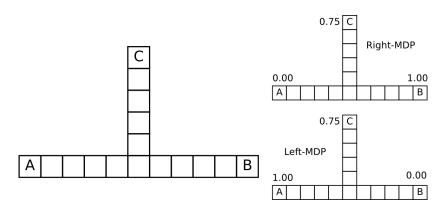


Figure: Multi-MDP T-Maze

The current Soar-RL framework can learn only the composite policy.

Shiwali Mohan and John Laird

Modular Reinforcement Learning in Soar 5/14

T-Maze Example

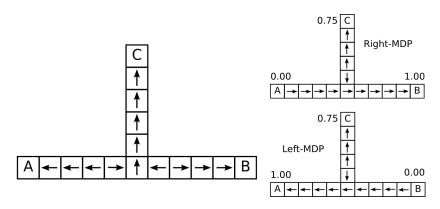


Figure: Multi-MDP T-Maze

The current Soar-RL framework can learn only the composite policy.

Shiwali Mohan and John Laird

Modular Reinforcement Learning in Soar 5/14

Modular Reinforcement Learning

- Goal
 - Discovering a composite policy for a set of N MDPs, $\{M_i\}_1^N$
 - Separate learning module (*sub-agent*) is created for each component MDP.

Modular Reinforcement Learning

• Goal

- Discovering a composite policy for a set of N MDPs, $\{M_i\}_1^N$
- Separate learning module (*sub-agent*) is created for each component MDP.
- Problem Formalization
 - as in Humphrys $(1997)^1$, Karlsson $(1997)^2$
 - Each MDP has a distinct state space S_i
 - Composite state space $S = S_1 \times S_2 \times \ldots \times S_N$
 - Share a common action space, ${\cal A}$
 - Each MDP has distinct reward R_i
 - Composite reward $R(s, a) = \sum_{i=1}^{N} R_i(s_i, a)$

Shiwali Mohan and John Laird

 $^{^{1}\}mathrm{Humphrys},$ M. (1997). Action Selection Methods Using Reinforcement Learning. PhD thesis, University of Cambridge

²Karlsson, J. (1997). Learning to Solve Multiple Goals. PhD thesis, University of Rochester

Modular Reinforcement Learning in Soar 6/14

Action Selection

• Multiple strategies can be used $(Humphrys, 1997)^3$

Shiwali Mohan and John Laird

 $^{^{3}\}mathrm{Humphrys},$ M. (1997). Action Selection Methods Using Reinforcement Learning. PhD thesis, University of Cambridge

⁴Bhat, S., Isbell, C., and Mateas, M. (2006). On the difficulty of Modular Reinforcement Learning for Real-World Partial Programming. In *In Proceedings of the the Twenty-First AAAI Conference on Artificial Intelligence*, volume 21, page 318. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999

Action Selection

- Multiple strategies can be used $(Humphrys, 1997)^3$
- Greatest Mass Learning
 - Actions are ordered by their summed Q-values, $X_a = \sum_j Q_j(s, a)$
 - Action selection may not be good for any single sub-agent

Shiwali Mohan and John Laird

³Humphrys, M. (1997). Action Selection Methods Using Reinforcement Learning. PhD thesis, University of Cambridge

⁴Bhat, S., Isbell, C., and Mateas, M. (2006). On the difficulty of Modular Reinforcement Learning for Real-World Partial Programming. In *In Proceedings of the the Twenty-First AAAI Conference on Artificial Intelligence*, volume 21, page 318. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999

Action Selection

- Multiple strategies can be used $(Humphrys, 1997)^3$
- Greatest Mass Learning
 - Actions are ordered by their summed Q-values, $X_a = \sum_j Q_j(s, a)$
 - Action selection may not be good for any single sub-agent
- Top-Q Learning
 - Actions are ordered by their Top Q-values, $X_a = \max_j Q_j(s, a)$
 - Subagent with top Q-value may not have a strong preference amongst actions

³Humphrys, M. (1997). Action Selection Methods Using Reinforcement Learning. PhD thesis, University of Cambridge

⁴Bhat, S., Isbell, C., and Mateas, M. (2006). On the difficulty of Modular Reinforcement Learning for Real-World Partial Programming. In In Proceedings of the the Twenty-First AAAI Conference on Artificial Intelligence, volume 21, page 318. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999

Action Selection

- Multiple strategies can be used (Humphrys, 1997)³
- Greatest Mass Learning
 - Actions are ordered by their summed Q-values, $X_a = \sum_j Q_j(s, a)$
 - Action selection may not be good for any single sub-agent
- Top-Q Learning
 - Actions are ordered by their Top Q-values, $X_a = \max_j Q_j(s, a)$
 - Subagent with top Q-value may not have a strong preference amongst actions
- Negotiated W-Learning
 - Select the subagent that stands to lose the most

³Humphrys, M. (1997). Action Selection Methods Using Reinforcement Learning. PhD thesis, University of Cambridge

⁴Bhat, S., Isbell, C., and Mateas, M. (2006). On the difficulty of Modular Reinforcement Learning for Real-World Partial Programming. In In Proceedings of the the Twenty-First AAAI Conference on Artificial Intelligence, volume 21, page 318. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999

Action Selection

- Multiple strategies can be used (Humphrys, 1997)³
- Greatest Mass Learning
 - Actions are ordered by their summed Q-values, $X_a = \sum_j Q_j(s, a)$
 - Action selection may not be good for any single sub-agent
- Top-Q Learning
 - Actions are ordered by their Top Q-values, $X_a = \max_j Q_j(s, a)$
 - Subagent with top Q-value may not have a strong preference amongst actions
- Negotiated W-Learning
 - Select the subagent that stands to lose the most
- Impossible to attain *ideal* arbitration (Bhat et al., $2006)^4$
 - $\bullet\,$ with properties like, universality, unanimity, scale invariance

 $^{^{3}\}mathrm{Humphrys},$ M. (1997). Action Selection Methods Using Reinforcement Learning. PhD thesis, University of Cambridge

⁴Bhat, S., Isbell, C., and Mateas, M. (2006). On the difficulty of Modular Reinforcement Learning for Real-World Partial Programming. In In Proceedings of the the Twenty-First AAAI Conference on Artificial Intelligence, volume 21, page 318. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999

Changes in rules, input, structure

- Multiple rewards on the reward link
 - correspond to different MDPs present in the environment

Changes in rules, input, structure

- Multiple rewards on the reward link
 - correspond to different MDPs present in the environment

• RL-rules with *labels*

. . .

8/14

Changes in Algorithm

• Rl-rules and *labels* have a *many-to-many* ordering

Changes in Algorithm

- Rl-rules and *labels* have a *many-to-many* ordering
- Value function update is distributed by *labels*
 - discounted reward is divided equally amongst matched rl-rules with corresponding label
 - numeric value of an rl-rule is incremented by the sum of updates for different labels on it

Changes in Algorithm

- Rl-rules and *labels* have a *many-to-many* ordering
- Value function update is distributed by *labels*
 - discounted reward is divided equally amongst matched rl-rules with corresponding *label*
 - numeric value of an rl-rule is incremented by the sum of updates for different *labels* on it
- Action Selection
 - Current architecture supports Greatest Mass Learning
 - Operators are selected according to their combined numeric value $X_a = \sum_j Q_j(s, a)$ with some exploration
 - Other action selection schemes to be explored

T-Maze

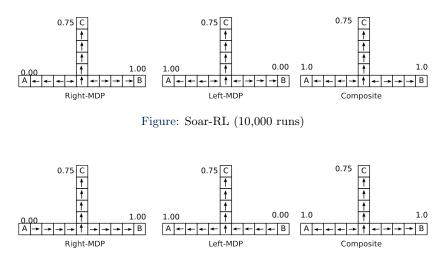


Figure: Soar-Modular-RL (10,000 runs)

Shiwali Mohan and John Laird

Modular Reinforcement Learning in Soar 10/14

Infinite Mario

- Object-oriented environment
- Previously,
 - Experimented with *action-selection* based on *class* of objects
 - Could not learn how to navigate in difficult situations
- Learn MDPs for a class of objects
 - Each object regulated a part of the reward signal
 - Individual updates to policy

Figure: Infinite Mario, difficulty 1

Infinite Mario - Results

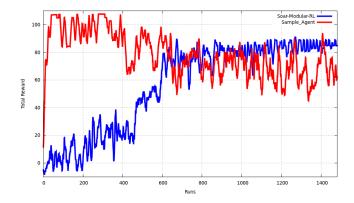


Figure: Infinite Mario, Difficulty 1, Seed 121

Shiwali Mohan and John Laird Modular Reinforcement Learning in Soar 12/14

Conclusions

- Limitations
 - No optimality guarantee for the composite solution in QLearning
 - each module is guaranteed to converge to an optimal policy, value function
 - composite solution is guaranteed to converge (derives deterministically from component solutions)
 - Only very weak convergence guarantees in very specific situations for SARSA (Sprague, 2003) 5

13/14

⁵Sprague, N. (2003). Multiple-goal Reinforcement Learning with Modular Sarsa (0). In International Joint Conference on Artificial Intelligence, number 0

Conclusions

- Limitations
 - No optimality guarantee for the composite solution in QLearning
 - each module is guaranteed to converge to an optimal policy, value function
 - composite solution is guaranteed to converge (derives deterministically from component solutions)
 - Only very weak convergence guarantees in very specific situations for SARSA (Sprague, 2003) 5
- Future Work
 - More experiments with action selection
 - How can rewards be distributed amongst components?

⁵Sprague, N. (2003). Multiple-goal Reinforcement Learning with Modular Sarsa (0). In International Joint Conference on Artificial Intelligence, number 0

Nuggets and Coal

• Nuggets

- An interesting, new approach to look at complex environments and faster solutions
- A better solution to Infinite Mario problem (took ~3 years)
- Can lead to better understanding of how soar-rules map to MDPs in RL setup
- Coal
 - Limited in variety of ways
 - Have done only limited experimentation with established methods
 - Distributing rewards amongst components might be a hard problem
 - Impossibility of an *ideal* arbitration function