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Background

Reinforcement Learning

The Reinforcement Learning (RL) problem – learn to maximize
the expected discounted return from any reachable state

More simply – learn the optimal choice of action from each state

Environment models can help, but are not always desirable

SARSA(λ) and Q(λ) are popular model-free RL algorithms
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Figure: Temporal Difference (TD) Backup for a Q-Value
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Background

On/Off-Policy Temporal Difference (TD) Learning

SARSA(λ) is on-policy – learning about policy being followed

Incorporates expected return of selected next action

Optimizing the current policy

Q(λ) is off-policy – not learning about policy being followed

Incorporates expected return of best available next action

Optimizing the optimal policy

In context of HRL – learning off-policy enables all-goals updating

Learn about multiple goals concurrently
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Background

On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions

(occasionally going off the edge of the cliff)

On-Policy converges indirectly to the ultimately optimal policy

Cliff

Figure: An on-policy agent with high exploration steers clear of the cliff
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Background

On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions

(occasionally going off the edge of the cliff)

On-Policy converges indirectly to the ultimately optimal policy

Cliff

Figure: An on-policy agent with moderate exploration stays closer to the cliff
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Background

On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions

(occasionally going off the edge of the cliff)

On-Policy converges indirectly to the ultimately optimal policy

Cliff

Figure: An on-policy agent with low exploration stays adjacent to the cliff
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Background

On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions

(occasionally going off the edge of the cliff)

Off-policy converges directly to the ultimately optimal policy

Cliff

Figure: An off-policy agent stays adjacent to the cliff regardless of exploration
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Hierarchical Reinforcement Learning

Bandit Task of Interest

A

1

C

100
B

10

A – Reward 1 – Escape into tunnel with dragon

B – Reward 10 – Fight less dangerous monster (depicted)

C – Reward 100 – Escape into tunnel with treasure
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Hierarchical Reinforcement Learning

Hierarchical RL (HRL)

Root

A

B

C

Subtask

Large or complex problems involving separable goals can be

broken down hierarchically

Decouples the problem of deciding which goal to achieve next

from the problem of how to achieve it

Enables state abstraction and goal reuse
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Hierarchical Reinforcement Learning

Exploration and Learning

Root

A

B

C

Subtask

Can explore non-greedy actions within a goal

Must learn correctly in supergoals regardless

Can explore subgoals with no chance of success

Must learn correctly in subgoals regardless
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Hierarchical Reinforcement Learning

Exploring Non-Greedy Actions - The Setup

Why are non-greedy actions in subgoals problematic?

A

1

C

100

B

10

Fight or Escape

Escape

Group actions A and C in a subtask, “Escape”. The decision procedure

becomes:

1 Fight (B) or Escape?

2 If Escape, then (A) or (C)?

Mitchell Keith Bloch (University of Michigan) Off-Policy HRL in Soar 7 / 16

http://bazald.com
http://www.umich.edu


Hierarchical Reinforcement Learning

Exploring Non-Greedy Actions - The Mistake

1 The true value of Escape is 100, once Escape is learned

2 Exploration, required by convergence proofs, causes Escape to

yield only 1 reward

3 The initial decision can learn that Escape is worth only 1

Point 3 is true even when learning with Q(λ).
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Hierarchical Reinforcement Learning

The Mistake - Visualized
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Effects of Updating While Exploring a Bandit Task

Flat RL

Fixed HRL

Naive HRL

Figure: Mean cumulative suboptimality for Naive RL asymptotes at

approximately -50 reward in the limit, regardless of cooling strategy.

Fixed HRL achieves an optimal policy but does worse than Flat RL due to

higher persistent exploration: (1− ε)2 < 1− ε
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Hierarchical Reinforcement Learning

Exploring Non-Greedy Actions - The Mistake

1 The true value of Escape is 100, once Escape is learned

2 Exploration, required by convergence proofs, causes Escape to

yield only 1 reward

3 The initial decision can learn that Escape is worth only 1

Point 3 is true even when learning with Q(λ).

This is not what we expect when learning off-policy!
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Hierarchical Reinforcement Learning

Exploring Non-Greedy Actions - The Mistake

1 The true value of Escape is 100, once Escape is learned

2 Exploration, required by convergence proofs, causes Escape to

yield only 1 reward

3 The initial decision can learn that Escape is worth only 1

Point 3 is true even when learning with Q(λ).

This is not what we expect when learning off-policy!

Conclusion: Learning must be blocked by exploration in subgoals.
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Hierarchical Reinforcement Learning

Hierarchical Credit Assignment

When does a goal bear responsibility for reward received?

On-Policy? – Goal is attainable when selected by supergoals

Off-Policy? – Additionally, all subgoals choose greedily
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Soar-RL
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Soar-RL

Soar-RL

Implements RL using numeric preferences and the RL link

Actually, one RL link per goal for correct hierarchical credit

assignment

Supports both SARSA(λ) and Q(λ) [Nason and Laird, 2004;

Derbinsky et al., 2009]

Implements HRL using operator no-change impasses and multiple

RL links
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Soar-RL

Recommendation 1: Exploration in Subgoals

When learning off-policy, TD updates must be blocked and eligibility

traces must be cleared.

Intra-option learning [Sutton and Precup, 1998] and (G)TSDT [Bloch,

2011b,a] can improve this situation somewhat.

Mitchell Keith Bloch (University of Michigan) Off-Policy HRL in Soar 13 / 16

http://bazald.com
http://www.umich.edu


Soar-RL

Recommendation 1.5: Intra-Option Learning

It is necessary to pursue a goal until success or failure for Soar-RL to

learn in the context of HRL, but this commitment is not integral to Soar.

Supporting intra-option learning [Sutton and Precup, 1998] and

(G)TSDT [Bloch, 2011b,a] would enable learning in cases where this

commitment is not desired.
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Soar-RL

Recommendation 2: Operator No-Change Impasses

Learning on-policy or off-policy, terminal reward should be backed up

as a goal retracts iff the impasse resolves normally.

A supergoal retracting should prevent TD updates.
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Nuggets and Coal

Nuggets and Coal

Nuggets:

Identified conditions under which HRL fails to work as expected

Modified HSMQ [Dietterich, 2000] and Intra-option learning

[Sutton and Precup, 1998], resulting in what I believe to be the

first off-policy TD methods to converge reliably in model-free HRL

systems

Created new traces to improve performance over HSMQ and

Intra-option learning [Bloch, 2011b,a] given the new constraints

Coal:

No formal convergence proofs provided

Not formally addressed function approximation (yet)
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