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0 Background
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Reinforcement Learning

@ The Reinforcement Learning (RL) problem — learn to maximize
the expected discounted return from any reachable state

o More simply — learn the optimal choice of action from each state
@ Environment models can help, but are not always desirable
@ SARSA()) and Q()\) are popular model-free RL algorithms
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Figure: Temporal Difference (TD) Backup for a Q-Value
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On/Off-Policy Temporal Difference (TD) Learning

@ SARSA()) is on-policy — learning about policy being followed

@ Incorporates expected return of selected next action
@ Optimizing the current policy
@ Q(\) is off-policy — not learning about policy being followed
o Incorporates expected return of best available next action
@ Optimizing the optimal policy
@ In context of HRL — learning off-policy enables all-goals updating
@ Learn about multiple goals concurrently
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On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions
(occasionally going off the edge of the cliff)

On-Policy converges indirectly to the ultimately optimal policy
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Figure: An on-policy agent with high exploration steers clear of the cliff
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On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions
(occasionally going off the edge of the cliff)

On-Policy converges indirectly to the ultimately optimal policy
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Figure: An on-policy agent with moderate exploration stays closer to the cliff
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On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions
(occasionally going off the edge of the cliff)

On-Policy converges indirectly to the ultimately optimal policy
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Figure: An on-policy agent with low exploration stays adjacent to the cliff
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On/Off-Policy Cliff-Walking Domain

Exploration requires choosing non-greedy actions
(occasionally going off the edge of the cliff)

Off-policy converges directly to the ultimately optimal policy
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Figure: An off-policy agent stays adjacent to the cliff regardless of exploration
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9 Hierarchical Reinforcement Learning
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Hierarchical Reinforcement Learning

Bandit Task of Interest

B
10

@ A —Reward 1 — Escape into tunnel with dragon
@ B — Reward 10 — Fight less dangerous monster (depicted)
@ C — Reward 100 — Escape into tunnel with treasure
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Hierarchical RL (HRL)
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@ Large or complex problems involving separable goals can be
broken down hierarchically

@ Decouples the problem of deciding which goal to achieve next
from the problem of how to achieve it

@ Enables state abstraction and goal reuse
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Exploration and Learning

/E& Subtask

A c

@ Can explore non-greedy actions within a goal
@ Must learn correctly in supergoals regardless

@ Can explore subgoals with no chance of success
@ Must learn correctly in subgoals regardless
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Exploring Non-Greedy Actions - The Setup

Why are non-greedy actions in subgoals problematic?

Fight or Escape
A
B

10

Group actions A and C in a subtask, “Escape”. The decision procedure
becomes:

© Fight (B) or Escape?

® If Escape, then (A) or (C)?
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Exploring Non-Greedy Actions - The Mistake

© The true value of Escape is 100, once Escape is learned

@® Exploration, required by convergence proofs, causes Escape to
yield only 1 reward

® The initial decision can learn that Escape is worth only 1

Point 3 is true even when learning with Q(\).
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The Mistake - Visualized

Effects of Updating While Exploring a Bandit Task
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Mean Cumulative Suboptimality
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Figure: Mean cumulative suboptimality for Naive RL asymptotes at
approximately -50 reward in the limit, regardless of cooling strategy.
Fixed HRL achieves an optimal policy but does worse than Flat RL due to
higher persistent exploration: (1 —¢)> <1 —¢
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Exploring Non-Greedy Actions - The Mistake

© The true value of Escape is 100, once Escape is learned

@® Exploration, required by convergence proofs, causes Escape to
yield only 1 reward

® The initial decision can learn that Escape is worth only 1

Point 3 is true even when learning with Q(\).

This is not what we expect when learning off-policy!
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Exploring Non-Greedy Actions - The Mistake

© The true value of Escape is 100, once Escape is learned

@® Exploration, required by convergence proofs, causes Escape to
yield only 1 reward

® The initial decision can learn that Escape is worth only 1

Point 3 is true even when learning with Q(\).
This is not what we expect when learning off-policy!

Conclusion: Learning must be blocked by exploration in subgoals.
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Hierarchical Credit Assignment

When does a goal bear responsibility for reward received?

@ On-Policy? — Goal is attainable when selected by supergoals
@ Off-Policy? — Additionally, all subgoals choose greedily
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e Soar-RL

Mitchell Keith Bloch (University of Michigan) Off-Policy HRL in Soar


http://bazald.com
http://www.umich.edu

Soar-RL

@ Implements RL using numeric preferences and the RL link
@ Actually, one RL link per goal for correct hierarchical credit
assignment
@ Supports both SARSA()\) and Q()\) [Nason and Laird, 2004;
Derbinsky et al., 2009]
@ Implements HRL using operator no-change impasses and multiple
RL links
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Recommendation 1: Exploration in Subgoals

When learning off-policy, TD updates must be blocked and eligibility
traces must be cleared.

Intra-option learning [Sutton and Precup, 1998] and (G)TSDT [Bloch,
2011b,a] can improve this situation somewhat.
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Recommendation 1.5: Intra-Option Learning

It is necessary to pursue a goal until success or failure for Soar-RL to
learn in the context of HRL, but this commitment is not integral to Soar.

Supporting intra-option learning [Sutton and Precup, 1998] and

(G)TSDT [Bloch, 2011b,a] would enable learning in cases where this
commitment is not desired.
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Recommendation 2: Operator No-Change Impasses

Learning on-policy or off-policy, terminal reward should be backed up
as a goal retracts iff the impasse resolves normally.

A supergoal retracting should prevent TD updates.
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e Nuggets and Coal
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Nuggets and Coal

Nuggets:
@ Identified conditions under which HRL fails to work as expected

@ Modified HSMQ [Dietterich, 2000] and Intra-option learning
[Sutton and Precup, 1998], resulting in what | believe to be the
first off-policy TD methods to converge reliably in model-free HRL
systems

@ Created new traces to improve performance over HSMQ and
Intra-option learning [Bloch, 2011b,a] given the new constraints

Coal:

@ No formal convergence proofs provided
@ Not formally addressed function approximation (yet)
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