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Actions, Internal & External
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Internal Actions Over Memory

 |Internal actions are deliberate or automatic

* Automatic actions are in the background
— Architectural and always happen
— Ex: storage to episodic memory

* Deliberate actions are in the foreground
— Procedural knowledge and cognitive
— Ex: storage to working memory



Internal Reinforcement Learning
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Assumptions

* Custom framework, not using Soar
* Simple memory models
* Simple tasks



Learning to Use Memory

* Research Question:
— When can agents learn to use memory?

e |dea:

— Investigate dynamics of memory and environment
independently

* Need:

— Simple, parameterized task



An Interactive TMaze
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An Interactive TMaze

DECIDE

(observation)

{Ieﬂ, rlght} (avail. actions)



; B,
.
.
¥\
\
\
-
| S \'

" T




TMaze

Base TMaze
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Question: how much knowledge is needed to perform this task?
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Parameterized TMazes
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Two Working Memory Models

Bit memory
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* |Internal action stores

current observation

* More expressive
 Grounded knowledge



Base TMaze
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Bit Memory & TMaze

* Methodology:

— Modify memory to
attribute blame

* Interfering behavior
in choice location

e Doesn’t manifest
with GWM
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State Diagram: Bit Memory TMaze
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State Diagram: GWM TMaze
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Number of Dependent Actions
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What We’ve Learned

 Our machine learning intuition is often wrong
(and yours probably is, too!)

* Chicken & Egg Problem
e State ambiguity is very problematic to learning



Chicken & Egg Problem

Prospective uses of memory are hard
e Case study: bit memory & TMazes

Bit memory Base TMaze Chicken & Egg Problem:

* Must learn an association
1/0 between1& 0and A & B
* Must learn an association

between 1 & 0 and left & right
* To be effective, can’t self-

interfere with memory in C!

Endemic across memory models



Implications for Soar

Soar natively supports learning internal acts.
Next step: learning to use Soar’s memories

Learning alongside hand-coded procedural
knowledge is potentially strong approach

Soar got the WM model right

RL will never be a magic bullet



Nuggets & Coal

Nearly finished!

Better understanding of
RL + memory, and thus
Soar 9

Parameterized,
empirical evaluations of
RL gaining traction
Optimality not only
metric of performance

Not quite finished!

Qualitative results, but
no closed form results
yet

No recent results for
long term memories

Not immediately
applicable to Soar



