Learning To Use Memory

Nick Gorski & John Laird Soar Workshop 2011

Memory & Learning

Actions, Internal & External

Internal Actions Over Memory

- Internal actions are deliberate or automatic
- Automatic actions are in the background
 - Architectural and always happen
 - Ex: storage to episodic memory
- Deliberate actions are in the foreground
 - Procedural knowledge and cognitive
 - Ex: storage to working memory

Internal Reinforcement Learning

Assumptions

- Custom framework, not using Soar
- Simple memory models
- Simple tasks

Learning to Use Memory

- Research Question:
 - When can agents learn to use memory?
- Idea:
 - Investigate dynamics of memory and environment independently
- Need:
 - Simple, parameterized task

An Interactive TMaze

(observation)

{forward}

(avail. actions)

An Interactive TMaze

DECIDE (observation)

{left, right}

(avail. actions)

TMaze

Question: how much knowledge is needed to perform this task?

Parameterized TMazes

Two Working Memory Models

Bit memory

1 toggle 0

Gated WM

- Internal action toggles between memory states
- Less expressive
- Ungrounded knowledge

- Internal action stores current observation
- More expressive
- Grounded knowledge

TMaze

Bit Memory & TMaze

- Methodology:
 - Modify memory to attribute blame
- Interfering behavior in choice location
- Doesn't manifest with GWM

State Diagram: Bit Memory TMaze

State Diagram: GWM TMaze

Number of Dependent Actions

What We've Learned

- Our machine learning intuition is often wrong (and yours probably is, too!)
- Chicken & Egg Problem
- State ambiguity is very problematic to learning

Chicken & Egg Problem

- Prospective uses of memory are hard
- Case study: bit memory & TMazes

Chicken & Egg Problem:

- Must learn an association between 1 & 0 and A & B
- Must learn an association between 1 & 0 and left & right
- To be effective, can't selfinterfere with memory in C!

Endemic across memory models

Implications for Soar

- Soar natively supports learning internal acts.
- Next step: learning to use Soar's memories
- Learning alongside hand-coded procedural knowledge is potentially strong approach
- Soar got the WM model right
- RL will never be a magic bullet

Nuggets & Coal

- Nearly finished!
- Better understanding of RL + memory, and thus Soar 9
- Parameterized, empirical evaluations of RL gaining traction
- Optimality not only metric of performance

- Not quite finished!
- Qualitative results, but no closed form results yet
- No recent results for long term memories
- Not immediately applicable to Soar