Soar-RL Discussion:
Future Directions, Open Questions,
and Why You Should Use It

Soar-RL Today

* Robust framework for integrated online RL

* Big features:
— Hierarchical RL
— Internal actions

— Architectural constraints
* Generalization, time

* Active research pushing in those directions

Soar-RL Tomorrow

e Future research directions
— Additional architectural constraints
— Fundamental advances in RL

* Increased adoption
— Usage cases
— Understanding barriers to use

Why You Should Use Soar-RL

Changing environment
Optimized policies over environment actions
Balanced exploration and exploitation

Why [would use Soar-RL if | were you

Non-stationary Environments

* Dynamic environment regularities
— Adversarial opponent in a game
— Weather or seasons in a simulated world
— Variations between simulated and embodied tasks
— Limited transfer learning, or tracking

* Agents that persist for long periods of time

Pragmatic Soar-RL

Get-all-blocks

Go-to-room

/\

Plan-path Drive-to-gateway

TS\ —T

opl op2 op3 Turn-left Turn-right Go-forward

Optimizing External Actions

Balanced Exploration & Exploitation

e Stationary, but stochastic actions

Practical Reasons

* Programmer time is expensive

 Learn in simulation, near-transfer to
embodied agent

* |f hand-coded behavior can guarantee
doctrine, then so can RL behavior

— Mix symbolic and adaptive behaviors FIX

Biggest Barrier to Using Soar-RL

Reinforcement
Learning

10

Other Barriers to Adop

X - /_

| Know What You’re Thinking

Future Directions for Soar-RL

Parameter-free framework
Issues of function approximation
Scaling to general intelligence
MDP characterization

Parameter-free framework

 Want fewer free parameters
— Less developer time finding best settings
— Stronger architectural commitments

 Parameters are set initially, and can evolve
over time

.. Knobs
Policies
poaton - LeE e
Gap handling P

Initial values

Learning algo. Eligibility decay

Soar-RL Value

* Q-value: expected future reward after taking
action g in state s

state action Q-value
<op> move-forward -0.8
<op> move-left -1.2
<op> move-forward -0.1
<op> move-left -0.3

A% <op>move-forward 0.4

Soar-RL Value Function Approximation

* Typically agent WM has lots of knowledge

— Some knowledge irrelevant to RL state

— Generalizing over relevant knowledge can improve
learning performance

 Soar-RL factorization is non-trivial
— Independent rules, but dependent features
— Linear combination of rules & values

— Rules that fire for more than one operator proposal

* Soar-RL is a good framework for exploration

Scaling to General Intelligence

* Actively extending Soar to long-term agents
— Scaling long-term memories
— Long runs with chunking

* Can RL contribute to long-term agents?
— Intrinsic motivation
— Origin of RL rules

— Correct factorization
* Rules, feature space, time
e What is learned with Soar-RL and what is hand coded

— Learning at the evolutionary time scale

MDP Characterization

MDP: Markov Decision Process

Interesting problems are non-Markovian
— Markovian problems are solvable

Goal: use Soar to tackle interesting problems
Are SARSA/Q-learning the right algorithms?

(The catch: basal ganglia performs temporal-difference updates)

