Soar-RL Discussion: Future Directions, Open Questions, and Why You Should Use It

31st Soar Workshop

Soar-RL Today

- Robust framework for integrated online RL
- Big features:
 - Hierarchical RL
 - Internal actions
 - Architectural constraints
 - Generalization, time
- Active research pushing in those directions

Soar-RL Tomorrow

- Future research directions
 - Additional architectural constraints
 - Fundamental advances in RL
- Increased adoption
 - Usage cases
 - Understanding barriers to use

Why You Should Use Soar-RL

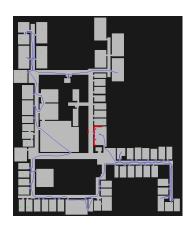
- Changing environment
- Optimized policies over environment actions
- Balanced exploration and exploitation

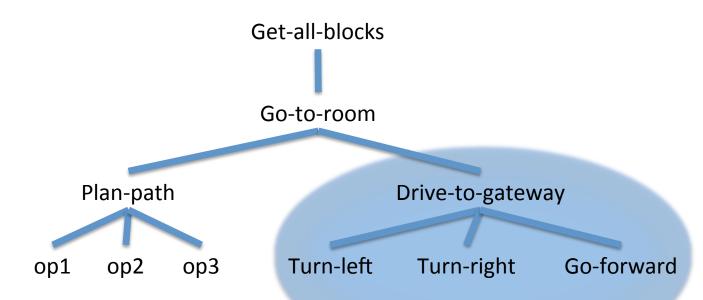
Why I would use Soar-RL if I were you

Non-stationary Environments

- Dynamic environment regularities
 - Adversarial opponent in a game
 - Weather or seasons in a simulated world
 - Variations between simulated and embodied tasks
 - Limited transfer learning, or tracking
- Agents that persist for long periods of time

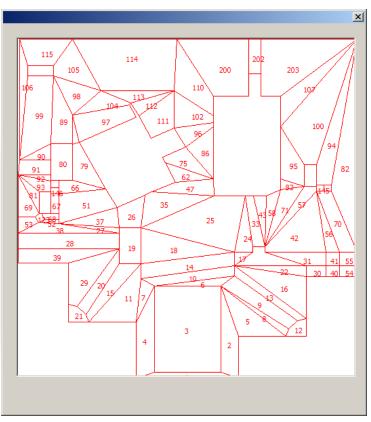
Pragmatic Soar-RL





Optimizing External Actions

Balanced Exploration & Exploitation

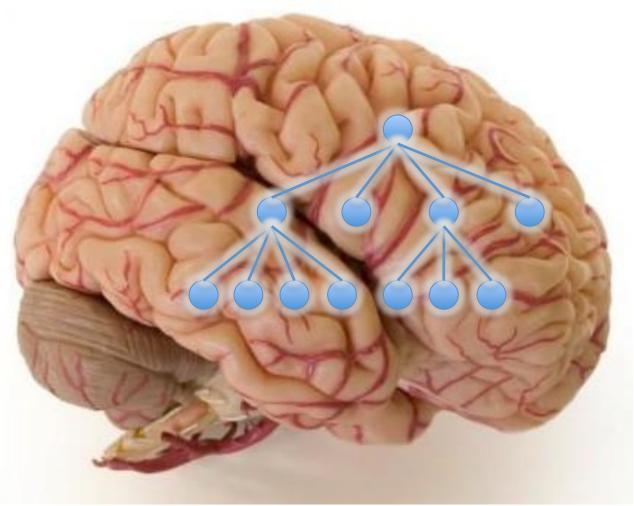


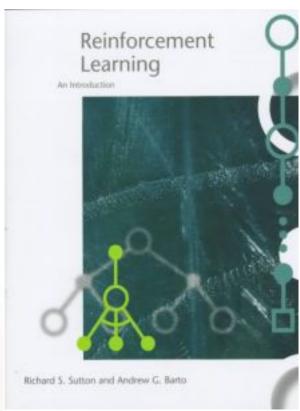
Stationary, but stochastic actions

Practical Reasons

- Programmer time is expensive
- Learn in simulation, near-transfer to embodied agent
- If hand-coded behavior can guarantee doctrine, then so can RL behavior
 - Mix symbolic and adaptive behaviors FIX

Biggest Barrier to Using Soar-RL





I Know What You're Thinking

Future Directions for Soar-RL

- Parameter-free framework
- Issues of function approximation
- Scaling to general intelligence
- MDP characterization

Parameter-free framework

- Want fewer free parameters
 - Less developer time finding best settings
 - Stronger architectural commitments
- Parameters are set initially, and can evolve over time

Policies

Exploration
Gap handling
Learning algo.

Knobs

Learning rate
Exploration rate
Initial values
Eligibility decay

Soar-RL Value

 Q-value: expected future reward after taking action a in state s

<u>state</u>	<u>action</u>	Q-value
	<op> move-forward</op>	-0.8
	<op> move-left</op>	-1.2
	<op> move-forward</op>	-0.1
<i>*</i> ***	<op> move-left</op>	-0.3
	<op> move-forward</op>	0.4

Soar-RL Value Function Approximation

- Typically agent WM has lots of knowledge
 - Some knowledge irrelevant to RL state
 - Generalizing over relevant knowledge can improve learning performance
- Soar-RL factorization is non-trivial
 - Independent rules, but dependent features
 - Linear combination of rules & values
 - Rules that fire for more than one operator proposal
- Soar-RL is a good framework for exploration

Scaling to General Intelligence

- Actively extending Soar to long-term agents
 - Scaling long-term memories
 - Long runs with chunking
- Can RL contribute to long-term agents?
 - Intrinsic motivation
 - Origin of RL rules
 - Correct factorization
 - Rules, feature space, time
 - What is learned with Soar-RL and what is hand coded
 - Learning at the evolutionary time scale

MDP Characterization

- MDP: Markov Decision Process
- Interesting problems are non-Markovian
 - Markovian problems are solvable
- Goal: use Soar to tackle interesting problems
- Are SARSA/Q-learning the right algorithms?

(The catch: basal ganglia performs temporal-difference updates)

