
New SVS Overview

Joseph Xu

Soar Workshop 31

June 2011

Outline

• Functionality in old SVS

• Addition of continuous control

• New implementation

• Conclusions

2

The Gist of SVS Past

• Hypothesis: Important properties of continuous
environments cannot be completely captured
with purely symbolic representations

• Use continuous representation to supplement
symbolic reasoning
– Continuous spatial scene graph

– Symbolic Soar extracts information by asking
questions in the form of spatial predicates

– Symbolic Soar modifies scene graph using imagery
commands

3

Spatial Scene Graph

• Set of discrete objects

• Hierarchy of “part-of”
relationships

• Each object is
transformed relative to
parent in terms of
position, rotation, and
scaling

• Each leaf object has a
concrete geometric form B

C

B C

A

World
P [0.1, 3.4, -12]

R [0.0, 0.0, 1.7]

S [1.0, 1.0, 1.0]

P [...]

R [...]

S [...]

P [...]

R [...]

S [...]

4

SVS Commands

world
(<s1> ^svs <s3>)

(<s3> ^command <c3>)

(<c3> ^extract <e1>)

(<e1> ^predicate intersect

 ^a A ^b B

 ^result false)

Commands

predicates

Working Memory Spatial Scene Graph

• Predicate extraction
– Ask a question about the current state

• Is car A intersecting box B?

• Imagery
– Imagine a change to the state for the purpose of reasoning about it

• If A is to the right of B, is it to the left of C?

• SVS is only a mechanism, it’s not smart
– Needs knowledge about which predicates to extract and imagery

operations to perform

5

Environment

A

B

B

Ax: 0.2
Ay: 1.2

Bx: 3.4
By: 3.9

A

Applications

• Applied to domains where spatial properties of state
are important

• Controlled with given discrete sets of actions
• One step predictions using ad-hoc model learning

methods

6

Soar Env
SVS

Continuous
state

predicates

Discrete actions

imagery

Continuous Control

• Many real world environments expect continuous
control signals from agent
– Example: robot domain expects left and right motor

voltages

• Traditional approach is to hand-code middleware
to translate set of discrete actions into
continuous output
– Action discretization is a priori, leading to non-

adaptive and non-optimal behavior
– Not part of the cognitive architecture theory
– Need new middleware for every new environment

7

My Motivation

8

Env SVS

predicates

Relational
actions

imagery

Symbolic
Soar

Env
SVS

Continuous
state

predicates

Discrete actions

imagery

Continuous
state

Continuous
actions

Augment SVS to allow
agents to automatically
learn continuous control
• Agent autonomously

derives a set of
relational actions that it
can plan over
symbolically

• SVS learns how to
translate relational
actions to continuous
output

Symbolic
Soar

Environment Assumptions

• Input to the agent is a scene
graph

• Output is fixed-length vector
of continuous numbers

– Agent doesn’t know a priori
what numbers represent

• Agent runs in lock-step with
environment

• Fully observable

• Some noise tolerable

9

Input

-9.0

5.8

Output

Environment Agent

0.2

1.2

3.4

3.9

A.x

A.y

B.x

B.y

A

B

B

Ax: 0.2
Ay: 1.2

Bx: 3.4
By: 3.9

A

Relational Actions

• The value of an extracted
predicate is the smallest
unit of change that’s
distinguishable to
symbolic Soar

• Each potential predicate
value change is a
relational action
– Combinations of

predicates?

• +intersect(A, B)

10

(<s1> ^svs <s3>)

(<s3> ^command <c3>)

(<c3> ^extract <e1>)

(<e1> ^predicate intersect

 ^a A ^b B

 ^result false) A

B

(<s1> ^svs <s3>)

(<s3> ^command <c3>)

(<c3> ^extract <e1>)

(<e1> ^predicate intersect

 ^a A ^b B

 ^result false)

A

B

(<s1> ^svs <s3>)

(<s3> ^command <c3>)

(<c3> ^extract <e1>)

(<e1> ^predicate intersect

 ^a A ^b B

 ^result true)

B
A

Continuous Controller

• Takes a relational action and translates into a multi-
step trajectory of continuous-valued outputs to
environment (𝑢1, 𝑢2, … , 𝑢𝑛)

• One predicate change takes multiple decision cycles

• May fail to find a trajectory that changes predicate
value

11

Env

SVS
predicates

Discrete
actions

imagery
Continuous

state

Continuous
actions

Symbolic
Soar

Continuous
Controller

Continuous Planning

• Find the trajectory that will lead to the
predicate change the fastest

12

GreedySearch(s, objective):

 for u in sample(outputs):

 y = continuous-model(s, u)

 o = objective(y)

 if o < best:

 best = o

 best-output = u

 return best-output

B

Euclidean
Distance

intersect(A, B)=true

A

Objective Function
𝑔 𝑥 → [−∞,∞]

Continuous Model
𝑓 𝑥, 𝑢 → 𝑦

Control Function
𝐻𝑓,𝑔 𝑥 → 𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 𝑔(𝑓 𝑥, 𝑢)

Learned (subject
of next talk) or

hand-coded

Given a priori for
each predicate

Fixed in architecture

Downhill
Simplex

Vector of transform
values in flattened

scene graph

Imagery with Control

• Agent can perform relational prediction by
simulating a trajectory using continuous model
on the internal scene graph, instead of sending it
out to the environment

• Modified scene graph updates predicates as usual

13

Env

SVS
predicates

Discrete
actions

imagery
Continuous

state

Continuous
actions

Symbolic
Soar

Continuous
Controller

Scene
Graph

Continuous
Model

Continuous
state

Summary

• Sam focused on theory of translating continuous
environment state into relational symbolic
representations

• I’ve added theory about where relational actions
come from and how to ground them into
continuous trajectories in the environment

• Ultimate goal: agents that can learn relational
abstractions and plan over them in continuous
environments

14

Relational State

Continuous State

¬intersect
 (robot, red_wp)
¬intersect
 (robot, green_wp)

Available Actions

+intersect(robot, red_wp)
+intersect(robot, green_wp)

Relational
Abstraction
(Predicate
Extraction)

Relational Model Relational Planner

Controller

Continuous Model

Pre o
u

t

Post

Objective Function

intersect
 (robot, red_wp)
¬intersect
 (robot, green_wp)

Environment

Relational
Action

State
Update

Continuous State

Motor
Signals

Relational State

communication

learning

usage

Relational
Abstraction
(Predicate
Extraction)

New Implementation

• Integrated into kernel rather than
communicate on IO link

• Removes dependencies on external libraries
(WildMagic, CGAL) to ease installation

• Structured code to be extensible
– Easy to add new predicates, commands, models

• Main idea: keep it clean enough that future
students won’t throw it away and start over
(happened twice already)

16

Nuggets & Coal

Nuggets

• Adds a task independent
mechanism for continuous
control

• Usable implementation,
soon to be released

Coal

• Dropped some functionality
from previous
implementations

• Not optimized, haven’t
measured performance in
non-trivial domains

17

Extract Rule
sp {cursor-target-intersect
 (state <s> ^superstate nil
 ^svs (^command <c>
 ^spatial-scene (
 ^child.id splinter
 ^child.id target)))
-->
 (<c> ^extract <e>)
 (<e> ^type bbox_intersect ^a <a> ^b)
 (<a> ^type bbox ^x <n1>)
 (<n1> ^type node ^name splinter)
 (^type bbox ^x <n2>)
 (<n2> ^type node ^name target)}

18

bbox

bbox

bbox_intersect
result

a

b

W
o

rkin
g

M
em

o
ry

node(splinter)

node(target)

x

x

Generate Rule
sp {gen-target
 (state <s> ^superstate nil
 ^svs.command <c>)
-->
 (<c> ^generate <g>)
 (<g> ^parent world
 ^node <n>)
 (<n> ^type gen
 ^name target
 ^points.type singleton
 ^pos <pos>)
 (<pos> ^type vec3 ^x 5.0 ^y -5.0 ^z 0.0)}

19

generate(world)

vec3(5.0, -5.0, 0.0)

points

pos

W
o

rkin
g

M
em

o
ry

result

scene graph
modification

singleton(0.0, 0.0, 0.0)

gen(target)

node

Control Rule

sp {seek-target

 (state <s> ^superstate nil

 ^svs (^command <c>

 ^spatial-scene (^child.id splinter

 ^child.id target)))

-->

 (<c> ^control <ctl>)

 (<ctl> ^type simplex ^depth 20 ^outputs <out>

 ^objective <obj> ^model model1)

 (<out> ^left <left> ^right <right>)

 (<left> ^min -1.0 ^max 1.0 ^inc 1.0)

 (<right> ^min -1.0 ^max 1.0 ^inc 1.0)

 (<obj> ^name euclidean ^a splinter ^b target)}

20

