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The Gist of SVS Past

* Hypothesis: Important properties of continuous
environments cannot be completely captured
with purely symbolic representations

* Use continuous representation to supplement
symbolic reasoning
— Continuous spatial scene graph

— Symbolic Soar extracts information by asking
guestions in the form of spatial predicates

— Symbolic Soar modifies scene graph using imagery
commands
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SVS Commands

Predicate extraction

— Ask a question about the current state
e Iscar Aintersecting box B?

Imagery

— Imagine a change to the state for the purpose of reasoning about it
e If Aisto the right of B, is it to the left of C?

SVS is only a mechanism, it’s not smart

— Needs knowledge about which predicates to extract and imagery
operations to perform

Environment
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Applications

Applied to domains where spatial properties of state
are important

Controlled with given discrete sets of actions

One step predictions using ad-hoc model learning
methods
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Continuous Control

* Many real world environments expect continuous
control signals from agent
— Example: robot domain expects left and right motor
voltages
* Traditional approach is to hand-code middleware
to translate set of discrete actions into
continuous output

— Action discretization is a priori, leading to non-
adaptive and non-optimal behavior

— Not part of the cognitive architecture theory
— Need new middleware for every new environment



My Motivation
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Environment Assumptions

Environment Agent * Input to the agent is a scene
graph

e QOutput is fixed-length vector
of continuous numbers

— Agent doesn’t know a priori
what numbers represent

* Agent runs in lock-step with

ax[02]  environment
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e Some noise tolerable




Relational Actions
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Continuous Controller

e Takes a relational action and translates into a multi-

step trajectory of continuous-valued outputs to
environment (uq, Uy, ..., Uy)

* One predicate change takes multiple decision cycles

* May fail to find a trajectory that changes predicate
value

Discrete Continuous

actions actions

3 Continuous
Controller

>

Symbolic

i Env
Soar m) Continuous

state

predicates PI——
€ SVS




Continuous Planning

* Find the trajectory that will lead to the
predicate change the fastest

Continuous Model Objective Function Control Function
flx,u) -y g(x) - [0, 0] Hf g(x) > u = argmin,[g(f (x,w))]
Learry M (subject Given a priori for Fixed i hitect
of i/ kt talk) or each predicate ixed in architecture
I-coded e GreedySearch(s, objective):

4 N for u in sample(outputs):

‘ continuous-model(s, u)
Downhill  pbjective(y)
Simplex best:

Vector of transform
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clidéan best-output = u
'~ _Distance return best-output
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Imagery with Control

* Agent can perform relational prediction by
simulating a trajectory using continuous model
on the internal scene graph, instead of sending it
out to the environment

* Modified scene graph updates predicates as usual
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Summary

 Sam focused on theory of translating continuous
environment state into relational symbolic
representations

* |'ve added theory about where relational actions
come from and how to ground them into
continuous trajectories in the environment

* Ultimate goal: agents that can learn relational
abstractions and plan over them in continuous
environments



Relational State

Available Actions
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New Implementation

Integrated into kernel rather than
communicate on IO link

Removes dependencies on external libraries
(WildMagic, CGAL) to ease installation
Structured code to be extensible

— Easy to add new predicates, commands, models
Main idea: keep it clean enough that future

students won’t throw it away and start over
(happened twice already)



Nuggets & Coal

Nuggets

 Adds a task independent

mechanism for continuous
control

Usable implementation,
soon to be released

Coal

Dropped some functionality
from previous
implementations

Not optimized, haven’t
measured performance in
non-trivial domains



Extract Rule

sp {cursor-target-intersect
(state <s> “superstate nil
~svs ( ~“command <c>
~spatial-scene (
~child.id splinter
~child.id target)))

(<c> "“extract <e>)

(<e> “type bbox_intersect "“a <a> ~b <b>)
(<a> ~type bbox ~x <nl>)

(<nl> ~type node “name splinter)

(<b> ~type bbox ~x <n2>)

(<n2> ~type node “name target)}

X

node(splinter) > bbox d

result

bbox_intersect

node(target) ——> bbox b
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Generate Rule

sp {gen-target
(state <s> “superstate nil
Asvs.command <c>)
-->
(<c> “generate <g>)
(<g> “parent world
~node <n>)
(<n> ~type gen
“name target
~points.type singleton
ApOS <posS>)
(<pos> "type vec3 ~x 5.0 "y -5.0 ~z 0.0)}

singleton(0.0, 0.0, 0.0) K P°'Nts

result

gen(target) —> generate(world) ———>
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vec3(5.0, -5.0, 0.0) ¢ pos node

scene graph
modification




Control Rule

sp {seek-target
(state <s> “superstate nil
~rsvs ( “command <c>
~spatial-scene ( ~child.id splinter
~child.id target)))

(<c> ~control <ctl>)

(<ctl> ~type simplex ~depth 20 ”~outputs <out>
~objective <obj> “model modell)

(<out> ~left <left> ~right <right>)

(<left> “min -1.0 “max 1.0 “inc 1.0)

(<right> “min -1.0 “max 1.0 ~inc 1.0)

(<obj> “name euclidean “a splinter ~b target)}



