New SVS Overview

Joseph Xu
Soar Workshop 31
June 2011

Outline

Functionality in old SVS
Addition of continuous control
New implementation
Conclusions

The Gist of SVS Past

* Hypothesis: Important properties of continuous
environments cannot be completely captured
with purely symbolic representations

* Use continuous representation to supplement
symbolic reasoning
— Continuous spatial scene graph

— Symbolic Soar extracts information by asking
guestions in the form of spatial predicates

— Symbolic Soar modifies scene graph using imagery
commands

Spatial Scene Graph

Set of discrete objects WOrld
Hiere? rchy pf “part-of” ey
relationships | sfro1o.10]
Each object is i
transformed relative to | B c P
parent in terms of S — |

.. . P[..] A P[..]
position, rotation, and R[...] R[]
scaling S[..] S[...]
Each leaf object has a C

concrete geometric form B

SVS Commands

Predicate extraction

— Ask a question about the current state
e Iscar Aintersecting box B?

Imagery

— Imagine a change to the state for the purpose of reasoning about it
e If Aisto the right of B, is it to the left of C?

SVS is only a mechanism, it’s not smart

— Needs knowledge about which predicates to extract and imagery
operations to perform

Environment

Spatial Scene Graph Working Memory
world Commands
B (<sl> "svs <s3>)
¢ (<s3> “command <c3>)
N~ [::> (<c3> "extract <el>)
(i’ (<el> "predicate intersect
) “a A "b B

“result false)

predicates

Applications

Applied to domains where spatial properties of state
are important

Controlled with given discrete sets of actions

One step predictions using ad-hoc model learning
methods

Discrete actions

imagery
Soar f— o0 Continuous Env

predicates SV5 € state

Continuous Control

* Many real world environments expect continuous
control signals from agent
— Example: robot domain expects left and right motor
voltages
* Traditional approach is to hand-code middleware
to translate set of discrete actions into
continuous output

— Action discretization is a priori, leading to non-
adaptive and non-optimal behavior

— Not part of the cognitive architecture theory
— Need new middleware for every new environment

My Motivation

Augment SVS to allow Diccrete actions .
agents to automatically |
. Symbolic | imagery ' Env
learn continuous control Soar [s Continuous
« Agent autonomously predicates €
derives a set of
relational actions that it
can plan over Relational Continuous
symbolically actions actions
* SVS learns how to Symbolic | oS -
translate relational Soar | T, Continuous A
state
actions to continuous Lpredicates «——

output

Environment Assumptions

Environment Agent * Input to the agent is a scene
graph

e QOutput is fixed-length vector
of continuous numbers

— Agent doesn’t know a priori
what numbers represent

* Agent runs in lock-step with

ax[02] environment
Ay (1.2
Bx |34 * Fully observable

By |3.9

e Some noise tolerable

Relational Actions

 The value of an extracted (<s1> “svs <s3>)
. . B (<s3> "“command <c3>)
predicate is the smallest (o3> Aextract <els)
Unit Of Change that’s (<el> "“predicate intersect
L. . “a A "b B
distinguishable to @ “result false)
symbolic Soar
] . B <sl> ”“svs <s3>)
* Each potential predicate <s3> “command <c3>)

<c3> "extract <el>)

<el> “predicate intersect
“a A "b B
“result false)

value change is a @ |$
relational action

— Combinations of

predicates? (<sl> ~svs <s3>)
(<s3> "“command <c3>)
¢ +interseCt(A, B) @ (<c3> "extract <el>)
(<el> “predicate intersect
“a A "b B

“result true)

Continuous Controller

e Takes a relational action and translates into a multi-

step trajectory of continuous-valued outputs to
environment (uq, Uy, ..., Uy)

* One predicate change takes multiple decision cycles

* May fail to find a trajectory that changes predicate
value

Discrete Continuous

actions actions

3 Continuous
Controller

>

Symbolic

i Env
Soar m) Continuous

state

predicates PI——
€ SVS

Continuous Planning

* Find the trajectory that will lead to the
predicate change the fastest

Continuous Model Objective Function Control Function
flx,u) -y g(x) - [0, 0] Hf g(x) > u = argmin,[g(f (x,w))]
Learry M (subject Given a priori for Fixed i hitect
of i/ kt talk) or each predicate ixed in architecture
I-coded e GreedySearch(s, objective):

4 N for u in sample(outputs):

‘ continuous-model(s, u)
Downhill pbjective(y)
Simplex best:

Vector of transform
values in flattened .'
scene graph

, best =0

clidéan best-output = u
'~ _Distance return best-output

intersect(A, B)=true 12

Imagery with Control

* Agent can perform relational prediction by
simulating a trajectory using continuous model
on the internal scene graph, instead of sending it
out to the environment

* Modified scene graph updates predicates as usual

D|s<frete Continuous
actions

Continuous actions 5| Continuous
Controller Model

Symbolic
Soar

Continuous

S| state Continuous
Scene € state

€ Graph g

predicates

imagery Env

SVS

Summary

 Sam focused on theory of translating continuous
environment state into relational symbolic
representations

* |'ve added theory about where relational actions
come from and how to ground them into
continuous trajectories in the environment

* Ultimate goal: agents that can learn relational
abstractions and plan over them in continuous
environments

Relational State

Available Actions

-intersect

(robot, red_wp)
-intersect

(robot, green_wp)

+intersect(robot, red_wp)

> +intersect(robot, green_wp)

n

Continuous State

’O

‘ communication

q learning

—— usage

\ 4

Relational Planner

—

A

TS5

Objective Function

Relational Model

=

-------------T

Relational State

intersect

(robot, red_wp)
-intersect

(robot, green_wp)

A
(

Continuous Model

Pre § Post

Controller

Continuous State

Environment

New Implementation

Integrated into kernel rather than
communicate on IO link

Removes dependencies on external libraries
(WildMagic, CGAL) to ease installation
Structured code to be extensible

— Easy to add new predicates, commands, models
Main idea: keep it clean enough that future

students won’t throw it away and start over
(happened twice already)

Nuggets & Coal

Nuggets

 Adds a task independent

mechanism for continuous
control

Usable implementation,
soon to be released

Coal

Dropped some functionality
from previous
implementations

Not optimized, haven’t
measured performance in
non-trivial domains

Extract Rule

sp {cursor-target-intersect
(state <s> “superstate nil
~svs (~“command <c>
~spatial-scene (
~child.id splinter
~child.id target)))

(<c> "“extract <e>)

(<e> “type bbox_intersect "“a <a> ~b)
(<a> ~type bbox ~x <nl>)

(<nl> ~type node “name splinter)

(~type bbox ~x <n2>)

(<n2> ~type node “name target)}

X

node(splinter) > bbox d

result

bbox_intersect

node(target) ——> bbox b

AJowa N
3upjIOM

Generate Rule

sp {gen-target
(state <s> “superstate nil
Asvs.command <c>)
-->
(<c> “generate <g>)
(<g> “parent world
~node <n>)
(<n> ~type gen
“name target
~points.type singleton
ApOS <posS>)
(<pos> "type vec3 ~x 5.0 "y -5.0 ~z 0.0)}

singleton(0.0, 0.0, 0.0) K P°'Nts

result

gen(target) —> generate(world) ———>

AJOWd|N
3upjdop

vec3(5.0, -5.0, 0.0) ¢ pos node

scene graph
modification

Control Rule

sp {seek-target
(state <s> “superstate nil
~rsvs (“command <c>
~spatial-scene (~child.id splinter
~child.id target)))

(<c> ~control <ctl>)

(<ctl> ~type simplex ~depth 20 ”~outputs <out>
~objective <obj> “model modell)

(<out> ~left <left> ~right <right>)

(<left> “min -1.0 “max 1.0 “inc 1.0)

(<right> “min -1.0 “max 1.0 ~inc 1.0)

(<obj> “name euclidean “a splinter ~b target)}

