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The Gist of SVS Past 

• Hypothesis: Important properties of continuous 
environments cannot be completely captured 
with purely symbolic representations 

• Use continuous representation to supplement 
symbolic reasoning 
– Continuous spatial scene graph 

– Symbolic Soar extracts information by asking 
questions in the form of spatial predicates 

– Symbolic Soar modifies scene graph using imagery 
commands 
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Spatial Scene Graph 

• Set of discrete objects 

• Hierarchy of “part-of” 
relationships 

• Each object is 
transformed relative to 
parent in terms of 
position, rotation, and 
scaling 

• Each leaf object has a 
concrete geometric form B 

C 

B C 

A 

World 
P [ 0.1, 3.4, -12 ] 

R [ 0.0, 0.0, 1.7 ] 

S [ 1.0, 1.0, 1.0 ] 

P [ ... ] 

R [ ... ] 

S [ ... ] 

P [ ... ] 

R [ ... ] 

S [ ... ] 
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SVS Commands 

world 
(<s1> ^svs <s3>) 

(<s3> ^command <c3>) 

(<c3> ^extract <e1>) 

(<e1> ^predicate intersect 

      ^a A ^b B 

      ^result false) 

Commands 

predicates 

Working Memory Spatial Scene Graph 

• Predicate extraction 
– Ask a question about the current state 

• Is car A intersecting box B? 

• Imagery 
– Imagine a change to the state for the purpose of reasoning about it 

• If A is to the right of B, is it to the left of C? 

• SVS is only a mechanism, it’s not smart 
– Needs knowledge about which predicates to extract and imagery 

operations to perform 
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Environment 

A 

B 

B 

Ax: 0.2 
Ay: 1.2 

Bx: 3.4 
By: 3.9 

A 



Applications 

• Applied to domains where spatial properties of state 
are important 

• Controlled with given discrete sets of actions 
• One step predictions using ad-hoc model learning 

methods 
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Continuous Control 

• Many real world environments expect continuous 
control signals from agent 
– Example: robot domain expects left and right motor 

voltages 

• Traditional approach is to hand-code middleware 
to translate set of discrete actions into 
continuous output 
– Action discretization is a priori, leading to non-

adaptive and non-optimal behavior 
– Not part of the cognitive architecture theory 
– Need new middleware for every new environment 
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My Motivation 
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actions 
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Symbolic 
Soar 

Env 
SVS 

Continuous 
state 

predicates 

Discrete actions 

imagery 

Continuous 
state 

Continuous 
actions 

Augment SVS to allow 
agents to automatically 
learn continuous control 
• Agent autonomously 

derives a set of 
relational actions that it 
can plan over 
symbolically 

• SVS learns how to 
translate relational 
actions to continuous 
output 

Symbolic 
Soar 



Environment Assumptions 

• Input to the agent is a scene 
graph 

• Output is fixed-length vector 
of continuous numbers 

– Agent doesn’t know a priori 
what numbers represent 

• Agent runs in lock-step with 
environment 

• Fully observable 

• Some noise tolerable 
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Relational Actions 

• The value of an extracted 
predicate is the smallest 
unit of change that’s 
distinguishable to 
symbolic Soar 

• Each potential predicate 
value change is a 
relational action 
– Combinations of 

predicates? 

• +intersect(A, B) 
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(<s1> ^svs <s3>) 

(<s3> ^command <c3>) 

(<c3> ^extract <e1>) 

(<e1> ^predicate intersect 

      ^a A ^b B 

      ^result false) A 

B 

(<s1> ^svs <s3>) 

(<s3> ^command <c3>) 

(<c3> ^extract <e1>) 

(<e1> ^predicate intersect 

      ^a A ^b B 

      ^result false) 

A 

B 

(<s1> ^svs <s3>) 

(<s3> ^command <c3>) 

(<c3> ^extract <e1>) 

(<e1> ^predicate intersect 

      ^a A ^b B 

      ^result true) 

B 
A 



Continuous Controller 

• Takes a relational action and translates into a multi-
step trajectory of continuous-valued outputs to 
environment (𝑢1, 𝑢2, … , 𝑢𝑛) 

• One predicate change takes multiple decision cycles 

• May fail to find a trajectory that changes predicate 
value 
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Continuous Planning 

• Find the trajectory that will lead to the 
predicate change the fastest 
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GreedySearch(s, objective): 

 for u in sample(outputs): 

  y = continuous-model(s, u) 

  o = objective(y) 

  if o < best: 

   best = o 

   best-output = u 

 return best-output 

B 

Euclidean 
Distance 

intersect(A, B)=true 

A 

Objective Function 
𝑔 𝑥 → [−∞,∞] 

Continuous Model 
𝑓 𝑥, 𝑢 → 𝑦 

Control Function 
𝐻𝑓,𝑔 𝑥 → 𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 𝑔(𝑓 𝑥, 𝑢 )  

Learned (subject 
of next talk) or 

hand-coded 

Given a priori for 
each predicate 

Fixed in architecture 

Downhill 
Simplex 

Vector of transform 
values in flattened 

scene graph 



Imagery with Control 

• Agent can perform relational prediction by 
simulating a trajectory using continuous model 
on the internal scene graph, instead of sending it 
out to the environment 

• Modified scene graph updates predicates as usual 
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Summary 

• Sam focused on theory of translating continuous 
environment state into relational symbolic 
representations 

• I’ve added theory about where relational actions 
come from and how to ground them into 
continuous trajectories in the environment 

• Ultimate goal: agents that can learn relational 
abstractions and plan over them in continuous 
environments 
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Relational State 

Continuous State 

¬intersect 
 (robot, red_wp) 
¬intersect 
 (robot, green_wp) 

Available Actions 

+intersect(robot, red_wp) 
+intersect(robot, green_wp) 
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Abstraction 
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Extraction) 
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New Implementation 

• Integrated into kernel rather than 
communicate on IO link 

• Removes dependencies on external libraries 
(WildMagic, CGAL) to ease installation 

• Structured code to be extensible 
– Easy to add new predicates, commands, models 

• Main idea: keep it clean enough that future 
students won’t throw it away and start over 
(happened twice already) 
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Nuggets & Coal 

Nuggets 

• Adds a task independent 
mechanism for continuous 
control 

• Usable implementation, 
soon to be released 

Coal 

• Dropped some functionality 
from previous 
implementations 

• Not optimized, haven’t 
measured performance in 
non-trivial domains 
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Extract Rule 
sp {cursor-target-intersect 
   (state <s> ^superstate nil 
              ^svs ( ^command <c> 
                     ^spatial-scene ( 
                         ^child.id splinter 
                         ^child.id target))) 
--> 
   (<c> ^extract <e>) 
   (<e> ^type bbox_intersect ^a <a> ^b <b>) 
   (<a> ^type bbox ^x <n1>) 
   (<n1> ^type node ^name splinter) 
   (<b> ^type bbox ^x <n2>) 
   (<n2> ^type node ^name target)} 
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Generate Rule 
sp {gen-target 
   (state <s> ^superstate nil 
              ^svs.command <c>) 
--> 
   (<c> ^generate <g>) 
   (<g> ^parent world 
        ^node <n>) 
   (<n> ^type gen 
        ^name target 
        ^points.type singleton 
        ^pos <pos>) 
   (<pos> ^type vec3 ^x 5.0 ^y -5.0 ^z 0.0)} 
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generate(world) 

vec3(5.0, -5.0, 0.0) 

points 

pos 
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Control Rule 

sp {seek-target 

   (state <s> ^superstate nil 

              ^svs ( ^command <c> 

                     ^spatial-scene ( ^child.id splinter 

                                      ^child.id target))) 

--> 

   (<c> ^control <ctl>) 

   (<ctl> ^type simplex ^depth 20 ^outputs <out> 

          ^objective <obj> ^model model1) 

   (<out> ^left <left> ^right <right>) 

   (<left>  ^min -1.0 ^max 1.0 ^inc 1.0) 

   (<right> ^min -1.0 ^max 1.0 ^inc 1.0) 

   (<obj> ^name euclidean ^a splinter ^b target)} 
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