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Introduction Instruction Task Agent Design Conclusions

Motivation

• Long living, general, intelligent agents
• demonstrate a wide range of behavior
• on a variety of task
• knowledge must be added throughout

the lifetime of the agent

• Instruction
• agent can be taught to learn new

procedures
• knowledge/information that can be

trusted
• situated, interactive instruction

produces strong human learning1

• semantic, procedural, problem solving
etc

1Bloom, B. S. (1986). The 2 Sigma Problem: The Search
for Methods of Group Instruction as Effective as One-to-One
Tutoring. Educational Researcher, 13(6):4–16
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Related Work

• Robo-Soar1

• search guidance in case of an operator tie

• Instructo-Soar2

• Identified properties of tutorial instruction, agent requirements
• Situated explanation
• learning through induction and inference, generalize from specific

examples

• Training Personal Robots Using Natural Language Instruction3

• focus on natural language comprehension and mapping
• Task Learning by Instruction: Benefits and Challenges for Intelligent
Interactive Systems4

• integration of various learning and reasoning components

1Laird, J. E., Yager, E. S., Hucka, M., and Tuck, C. M. (1991). Robo-Soar: An Integration of
External Interaction, Planning, and Learning using Soar. Robotics and Autonomous Systems,
8(1-2):113–129

2Huffman, S. and Laird, J. (1995). Flexibly Instructable Agents. Journal of Artificial Intelligence
Research, 3:271–324

3Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., and Klein, A. (2001). Training Personal Robots
Using Natural Language Instruction. Intelligent Systems, IEEE, 16(5):38–45

4Blythe, J., Tandon, P., and Tillu, M. (2007). Task Learning by Instruction: Benefits and
Challenges for Intelligent Interactive Systems. American Association for Artificial Intelligence
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Domain

Given a set of primitive actions:

go-to <area-id>, go-to-room <room-id>,
open-door <door-id>, close-door <door-id>,
turn-lights-on, turn-lights-off,
pick-up <object-id>, put-down <object-id>,

Learn abstract actions:

patrol [list-of-rooms]
turn-all-lights-off
get-object <object-id>

Shiwali Mohan and John E. Laird Learning with Instruction 5/ 18



Introduction Instruction Task Agent Design Conclusions

Goals

• Identify and characterize different kinds of instructions in a complex
environment

• different kinds of knowledge, different modes of instruction

• Identify and characterize requirements on the agent design
• general set of rules required to support instruction

• Explore the utility of different long-term memories in a complex
learning task

• Develop a comprehensive model of learning that uses different
reasoning and learning modules

• inference, chunking, inductive reasoning, explanation-based
generalization

• Develop evaluation metrics
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Characterizing Instructions: Taxonomy

• Scope
• Tutorial: instruct as the agent is acting 5

• Instruction Manual: instruct before the agent begins acting

• Application
• When commanded: patrol rooms A B and C
• Automated: when non-friendly person is observed, report back

• Context
• Situated: go-to-room A, turn-light-on
• Hypothetical: imagine room A, the light-switch is on north wall

• Communication
• Agent Initiated: agent does not know how to proceed
• Instructor Initiated: modify a learned procedure

• Task Structuring
• Composite: learn turn-all-lights-off
• Incremental: learn patrol, modify patrol to include turning off lights

5Huffman, S. and Laird, J. (1995). Flexibly Instructable Agents. Journal of Artificial Intelligence
Research, 3:271–324
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Instruction Taxonomy

• Learning
• Rote: memorize sequence of instructions
• Generalized: learn general procedures

• Reasoning
• Simple
• Inference

• Knowledge
• Proposal and goal conditions: turn-lights-off when in a room and light is
on

• Control: reporting non-friendly persons is more important than picking
up objects

• Semantic: objects with color=blue are dangerous
• Meta: arguments are sequential, random

Shiwali Mohan and John E. Laird Learning with Instruction 8/ 18



Introduction Instruction Task Agent Design Conclusions

Instruction Taxonomy

• Learning
• Rote: memorize sequence of instructions
• Generalized: learn general procedures

• Reasoning
• Simple
• Inference

• Knowledge
• Proposal and goal conditions: turn-lights-off when in a room and light is
on

• Control: reporting non-friendly persons is more important than picking
up objects

• Semantic: objects with color=blue are dangerous
• Meta: arguments are sequential, random

Shiwali Mohan and John E. Laird Learning with Instruction 8/ 18



Introduction Instruction Task Agent Design Conclusions

Instruction Taxonomy

• Learning
• Rote: memorize sequence of instructions
• Generalized: learn general procedures

• Reasoning
• Simple
• Inference

• Knowledge
• Proposal and goal conditions: turn-lights-off when in a room and light is
on

• Control: reporting non-friendly persons is more important than picking
up objects

• Semantic: objects with color=blue are dangerous
• Meta: arguments are sequential, random

Shiwali Mohan and John E. Laird Learning with Instruction 8/ 18



Introduction Instruction Task Agent Design Conclusions

Requirements on Agent Design

• The Communication Problem
• The Content Problem

• What information has to be
communicated?

• Model of the instructor
• Assumption of shared environment,

similar observations

• The Mapping Problem
• Common protocal between human

and agent
• Comprehending instructions
• Generating discourse

• The Interaction Problem
• Maintaining a dialog
• Integrating communication, learning

and acting
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Requirements on Agent Design

• The Learning Problem
• The Knowledge Problem

• Instruction may carry any type of
knowledge (semantic, meta, control)

• Applying knowledge to ongoing task
in current context

• Using one kind of knowledge to
learn a different kind (semantic →
procedural)

• The Transfer Problem
• Learning generally applicable

knowledge
• Transfer to appropriate conditions in

future
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Learning from Instruction with Soar: An Example

• Learns abstract action, patrol
patrol room 1 room 2 room 3
go-to-room room 1, go-to-room room 2,
go-to-room room 3, go-to-room room 1

• Instruction type

Scope Application Communication Context
tutorial automated agent-initiated situated

Learning Reasoning Knowledge Task Structuring
rote - - -

• Agent requirements
• The Mapping Problem: hand-coded symbols
• The Content Problem: pushed to the human
• The Interaction Problem: agent-initiated communication
• The Knowledge Problem: uses instructions to perform and learn
patrol

• The Transfer Problem: to be investigated later

• Soar architecture components
• Procedural, semantic, working memory
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Knowledge Levels

• Procedural Knowledge
• Immediate application
• state-no-change: implies lack of

procedural knowledge for current state

• Semantic/Episodic Memory
• Deliberate lookup
• retrieve/query failure

• Human Instructor
• Deliberate questions
• Incomplete/incorrect/specific

knowledge
• requires inference
• generalization
• situated explanation (Huffman and

Laird, 1995)1

1Huffman, S. and Laird, J. (1995). Flexibly Instructable
Agents. Journal of Artificial Intelligence Research, 3:271–324
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The Instruction Cycle

• Detect lack of knowledge to proceed further [knowledge]
• state-no-change creates a lookup-smem subgoal
• retrieval attempt may lead to a success/failure
• if success, apply the retrieved command in superstate
• if failure, store relevant information at the topstate [interaction]

• Query:
• Create query using information stored in the Detect phase [content]
• Generate discourse [mapping]

• Wait for response from the instructor [interaction]
• Parse [mapping]
• Assimilate:

• create appropriate structures
• store in semantic memory using information stored in Detect phase

[knowledge]

• Apply:
• recreate state stack [interaction]
• apply the new piece of information [knowledge]

• Explain: ? [transfer]
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Example Execution

• S1 (robot): ?
state-no-change

• S2 (lookup-memory): retrieve-next
failure
S2 (lookup-memory): store-information

• S1 (robot): ask-instructor

agent: "robot"
instructor: "patrol room 1 room 2 room 3"

S1 (robot): store-instruction

• S1 (topstate): ?
state-no-change

• S2 (lookup-memory): retrieve-next
success
S2 (lookup-memory): propose patrol in S1

• S1 (robot): patrol
operator-no-change
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• Limitations
• very limited in scope
• learns by rote
• agent initiated communication only

• Future Work
• Understanding and solving the transfer problem for this instruction set
• Using episodic memory
• More detailed investigation of various kinds of instruction
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Nuggets and Coal

• Nuggets
• Have a proof of concept of how instruction can be used for acting
• Learns ‘patrol’ and can learn other commands in a similar fashion

• Coal
• Cannot learn general conditions yet
• Not a good idea of what the goal of ‘patrol’ is
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