
The Selection Space

John E. Laird
32nd Soar Workshop

Overview One-step Look-ahead
Using Selection Problem Space

(on A Table)
(on B Table)
(on C A)

 A B

C

move(C, B)

move(B, C)

move(C, Table)

Evaluate-operator(move(C, Table))

(on A Table)
(on B Table)
(on C A)

move(C, Table)

Tie Impasse

(on A Table)
(on B Table)
(on C Table)

Evaluation = 1

Evaluate-operator(move(C, B)) Evaluate-operator(move(B,C))

copy

Evaluation = 0 Evaluation = 0 Evaluation = 1

Prefer move(C, Table)

A B C

A
B
C

Goal

Selection Space

• Important state structures created by Soar
– ^impasse tie, ^item 01 02 …

• Evaluate-operator
1. Instantiated with every item (every tied operator) that has

not been evaluated
 (<s> ^operator <o>)

 (<o> ^name evaluate-operator

 ^superoperator <so>)

2. Usually randomly select between them (some exceptions)
3. Create ^evaluation structure on selection state

Page 3

Evaluate State Structure

• When evaluate-operator is selected, create:
– (<s> ^evaluation <e>)
– (<e> ^superoperator <i>)
– (<o> ^evaluation <e> # on evaluate-operator
– ^superstate <ss> # task state
– ^superproblem space <ps>)

• Evaluate-operator terminates when a value is
created on the associate evaluation
– (<e> ^value true)

Page 4

Evaluate-operator Substate

• Create a copy of the task state
– Includes ^name, ^desired
– ^problem-space determines how to create copy

• Many flags to control what to copy and how deep
• ^default-state-copy yes is default

• If don’t create copy, original state will change

5

Evaluate-operator Processing
1. Force selection of a copy of the operator being evaluated
2. Operator application rule should fire and generate new state

– Requires action model: operator application rule for simulating operator
– If doesn’t, will eventually get impasses that lead to a failed evaluation.

3. If there is state evaluation knowledge, it adds augmentation to state
– ^numeric-value, ^symbolic-value, ^expected-value
– Copied up to the evaluation structure in the selection space
– Leads to evaluate-operator terminating

• By default, elaboration rules aggressively convert evaluations to
preferences.
– Evaluates only as many operators as necessary to generate preferences

to break the tie.
• Chunks are learned for computing evaluations and preferences

Page 6

Overview One-step Look-ahead
Using Selection Problem Space

(on A Table)
(on B Table)
(on C A)

 A B

C

move(C, B)

move(B, C)

move(C, Table)

Evaluate-operator(move(C, Table))

(on A Table)
(on B Table)
(on C A)

move(C, Table)

Tie Impasse

(on A Table)
(on B Table)
(on C Table)

Evaluation = 1

Evaluate-operator(move(C, B)) Evaluate-operator(move(B,C))

copy

Evaluation = 0 Evaluation = 0 Evaluation = 1

move(C, Table) > move(C, B)
move(C, Table) > move(B, C)
move(B, C) = move(C, B)

A B C

A
B
C

Goal

Requirements to Use Selection Space

• Source in selection.soar!
– Explains the following requirements

• Have a ^problem-space structure on the state
• Have a ^desired structure on the state
• Include rules that compute failure/success/evaluation.
• Have rules that simulate action of operators

– This is an action model
– Only apply when in state with
 ^name evaluate-operator

8

Depth-First Search in Soar

• If no evaluation of the state, continues in substate
– If sufficient knowledge, selects and applies operator
– If insufficient knowledge, get a tie impasse and recursively

get depth-first search.
• The state “open” list is represented as the stack of

substates.
• Elaboration rules pass success up the stack to avoid

extra search.
• No guarantee of finding shortest path.
• Chunking is necessary to avoid repeated search.

Page 9

Overview One-step Look-ahead
Using Selection Problem Space

(on A Table)
(on B Table)
(on C A)

 A B

C

move(C, B)

move(B, C)

move(C, Table)

Evaluate-operator(move(C, Table))

(on A Table)
(on B Table)
(on C A)

move(C, Table)

Tie Impasse

(on A Table)
(on B Table)
(on C Table)

copy

A B C

A
B
C

Goal

move(C, B)

move(B, C)

move(A, B)

Tie Impasse

Iterative Deepening

• Include an evaluation-depth in the selection
space

• Evaluate all of the task operators to that depth
– Start with depth = 1
– In each recursive selection substate, decrement

depth

• Terminate if achieve goal
• Increment depth when all task operators have

been evaluated

11

Deep Search in Soar:
 Iterative A*

• Assumes task state structure
– Graph structure of ^waypoints, with a ^current-location

• Every evaluation maintains
– Path-cost: g(x)
– Estimated-cost: h(x)
– Total-estimated-cost: f(x) = g(x) + h(x)

• Prefer an evaluate-operator to another
– If it doesn’t have an estimated-cost # get initial values
– If its total-estimated-cost is less than the others # pursue best

• Final-cost for an operator is when estimated cost is 0
• Create a preference if final-cost(o1) < total-estimated-cost(o2)
• Complex rules and operators combine estimates from substates

– Add operators: compute-evaluations, compare-evaluations, compute-
best-total-estimate

12

4, 4

Page 13

3, 5

3, 4

2, 4

4,3

3, 4

2: Path: 1.4; Estimated : 2.3; Total 3.7

1.4

2.3

1

2 3 4

5 6

Page 14

3, 5

3, 4

2, 4

4, 4

4,3

3, 4

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4

1.4

1.0

1

2 3 4

5 6

Page 15

3, 5

3, 4

2, 4

4, 4

4,3

3, 4

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4
4: Path: 1.4; Estimated: 1.0; Total 2.4

1.4

1.0

1

2 3 4

5 6

Page 16

3, 5

3, 4

2, 4

4, 4

4,3

3, 4

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4
4: Path: 1.4; Estimated: 1.0; Total 2.4
4: Path: 2.8; Estimated: 1.0 Total 3.8

1.4

1.0

1.4

1

2 3 4

5 6

Page 17

3, 5

3, 4

2, 4

4, 4

4,3

3, 4

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4

4: Path: 2.8; Estimated: 1.0 Total 3.8
3: Path: 3.3; Estimated: 1.0 Total 4.3

1.0

2.3

1.0

1

2 3 4

5 6

Page 18

3, 5

3, 4

2, 4

4, 4

4,3

3, 4

2: Path: 1.4; Estimated : 2.3; Total 3.7

4: Path: 2.8; Estimated: 1.0 Total 3.8
3: Path: 3.3; Estimated: 1.0 Total 4.3
2: Path 3.7; Estimated: 0.0 Final: 3.7

1.4

2.3

2.3

1

2 3 4

5 6

Nuggets and Coal

• Nuggets:
– Provides task-independent knowledge for

controlling deliberate operator evaluation
– Plays well with chunking

• Coal
– Requires some knowledge of conventions
– More advanced methods are pretty complex

Page 19

	The Selection Space�
	Overview One-step Look-ahead �Using Selection Problem Space
	Selection Space
	Evaluate State Structure
	Evaluate-operator Substate
	Evaluate-operator Processing
	Overview One-step Look-ahead �Using Selection Problem Space
	Requirements to Use Selection Space
	Depth-First Search in Soar
	Overview One-step Look-ahead �Using Selection Problem Space
	Iterative Deepening
	Deep Search in Soar:� Iterative A*
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Nuggets and Coal

