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Overview One-step Look-ahead
Using Selection Problem Space
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Selection Space

 Important state structures created by Soar

— Nimpasse tie, Aitem 01 02 ...

e Evaluate-operator

1. Instantiated with every item (every tied operator) that has
not been evaluated
(<s> "operator <o0>)
(<o> ™name evaluate-operator
Asuperoperator <so>)

2. Usually randomly select between them (some exceptions)
3. Create "evaluation structure on selection state



Evaluate State Structure

 When evaluate-operator is selected, create:
— (<s> Mevaluation <e>)
— (<e> Asuperoperator <i>)
— (<o> Mevaluation <e> # on evaluate-operator
— Asuperstate <ss>  # task state
— Asuperproblem space <ps>)

e Evaluate-operator terminates when a value is
created on the associate evaluation
— (<e> Mvalue true)



Evaluate-operator Substate

e Create a copy of the task state
— Includes *name, *desired

— Mproblem-space determines how to create copy
 Many flags to control what to copy and how deep
e Ndefault-state-copy vyes is default

e |f don’t create copy, original state will change



Evaluate-operator Processing

1. Force selection of a copy of the operator being evaluated
2. Operator application rule should fire and generate new state
— Requires action model: operator application rule for simulating operator
— If doesn’t, will eventually get impasses that lead to a failed evaluation.
3. If there is state evaluation knowledge, it adds augmentation to state
— Mnumeric-value, *symbolic-value, *expected-value
— Copied up to the evaluation structure in the selection space
— Leads to evaluate-operator terminating

By default, elaboration rules aggressively convert evaluations to
preferences.

— Evaluates only as many operators as necessary to generate preferences
to break the tie.

e Chunks are learned for computing evaluations and preferences
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Requirements to Use Selection Space

Source in selection.soar!
— Explains the following requirements

Have a "problem-space structure on the state
Have a Mdesired structure on the state
nclude rules that compute failure/success/evaluation.

Have rules that simulate action of operators
— This is an action model
— Only apply when in state with

Aname evaluate-operator




Depth-First Search in Soar

If no evaluation of the state, continues in substate
— |If sufficient knowledge, selects and applies operator

— If insufficient knowledge, get a tie impasse and recursively
get depth-first search.

The state “open” list is represented as the stack of
substates.

Elaboration rules pass success up the stack to avoid
extra search.

No guarantee of finding shortest path.
Chunking is necessary to avoid repeated search.
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Iterative Deepening

Include an evaluation-depth in the selection
space
Evaluate all of the task operators to that depth

— Start with depth =1

— In each recursive selection substate, decrement
depth

Terminate if achieve goal

Increment depth when all task operators have
been evaluated



Deep Search in Soar:
Iterative A*

Assumes task state structure

— Graph structure of *waypoints, with a *current-location
Every evaluation maintains

— Path-cost: g(x)

— Estimated-cost: h(x)

— Total-estimated-cost: f(x) = g(x) + h(x)
Prefer an evaluate-operator to another

— If it doesn’t have an estimated-cost # get initial values

— If its total-estimated-cost is less than the others # pursue best
Final-cost for an operator is when estimated cost is O
Create a preference if final-cost(o1) < total-estimated-cost(02)
Complex rules and operators combine estimates from substates

— Add operators: compute-evaluations, compare-evaluations, compute-
best-total-estimate
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Nuggets and Coal

e Nuggets:

— Provides task-independent knowledge for
controlling deliberate operator evaluation

— Plays well with chunking
e Coal

— Requires some knowledge of conventions

— More advanced methods are pretty complex
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