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Selection Space 

• Important state structures created by Soar 
– ^impasse tie, ^item 01 02 … 

• Evaluate-operator 
1. Instantiated with every item (every tied operator) that has 

not been evaluated   
 (<s> ^operator <o>) 

 (<o> ^name evaluate-operator 

                ^superoperator <so>) 

2. Usually randomly select between them (some exceptions) 
3. Create ^evaluation structure on selection state 
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Evaluate State Structure 

• When evaluate-operator is selected, create: 
– (<s> ^evaluation <e>) 
– (<e> ^superoperator <i>) 
– (<o> ^evaluation <e>        # on evaluate-operator 
–          ^superstate <ss>       # task state 
–          ^superproblem space <ps>) 

• Evaluate-operator terminates when a value is 
created on the associate evaluation 
– (<e> ^value true) 
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Evaluate-operator Substate 

• Create a copy of the task state 
– Includes ^name, ^desired 
– ^problem-space determines how to create copy 

• Many flags to control what to copy and how deep 
• ^default-state-copy yes is default 

• If don’t create copy, original state will change 
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Evaluate-operator Processing 
1. Force selection of a copy of the operator being evaluated 
2. Operator application rule should fire and generate new state 

– Requires action model: operator application rule for simulating operator 
– If doesn’t, will eventually get impasses that lead to a failed evaluation. 

3. If there is state evaluation knowledge, it adds augmentation to state 
– ^numeric-value, ^symbolic-value, ^expected-value 
– Copied up to the evaluation structure in the selection space 
– Leads to evaluate-operator terminating 

• By default, elaboration rules aggressively convert evaluations to 
preferences. 
– Evaluates only as many operators as necessary to generate preferences 

to break the tie. 
• Chunks are learned for computing evaluations and preferences 
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Requirements to Use Selection Space 

• Source in selection.soar! 
– Explains the following requirements 

• Have a ^problem-space structure on the state 
• Have a ^desired structure on the state 
• Include rules that compute failure/success/evaluation. 
• Have rules that simulate action of operators 

– This is an action model 
– Only apply when in state with  
   ^name evaluate-operator 
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Depth-First Search in Soar 

• If no evaluation of the state, continues in substate 
– If sufficient knowledge, selects and applies operator 
– If insufficient knowledge, get a tie impasse and recursively 

get depth-first search.  
• The state “open” list is represented as the stack of 

substates. 
• Elaboration rules pass success up the stack to avoid 

extra search. 
• No guarantee of finding shortest path. 
• Chunking is necessary to avoid repeated search. 
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Iterative Deepening 

• Include an evaluation-depth in the selection 
space 

• Evaluate all of the task operators to that depth 
– Start with depth = 1 
– In each recursive selection substate, decrement 

depth 

• Terminate if achieve goal 
• Increment depth when all task operators have 

been evaluated 
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Deep Search in Soar: 
 Iterative A* 

• Assumes task state structure 
– Graph structure of ^waypoints, with a ^current-location 

• Every evaluation maintains 
– Path-cost: g(x) 
– Estimated-cost: h(x) 
– Total-estimated-cost: f(x) = g(x) + h(x) 

• Prefer an evaluate-operator to another 
– If it doesn’t have an estimated-cost    # get initial values 
– If its total-estimated-cost is less than the others   # pursue best 

• Final-cost for an operator is when estimated cost is 0 
• Create a preference if final-cost(o1) < total-estimated-cost(o2) 
• Complex rules and operators combine estimates from substates 

– Add operators: compute-evaluations, compare-evaluations, compute-
best-total-estimate 
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Nuggets and Coal 

• Nuggets:  
– Provides task-independent knowledge for 

controlling deliberate operator evaluation 
– Plays well with chunking 

• Coal  
– Requires some knowledge of conventions 
– More advanced methods are pretty complex 
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