The Selection Space

John E. Laird
32"d Soar Workshop

UNIVERSITY OF
MICHIGAN

Overview One-step Look-ahead
Using Selection Problem Space

N
\\Tie Impasse

(on A Table)) ‘\ B
(on B Table)] ! Prefer move(C, Table)
(on CA) move(lt, Tableb A C
P -1 ™ o Goal
l C) 'l I > \\ ~
—~ —
oD 9 S NN
; I N S~
/ _/, I \ N
/ | \ \
/ Evaluation = 1 Evaluation =0 Evaluation =0
valuate-operator(move(C, Table)fvaluate-operator mci\?_(_;\B Evaluate- operator(e(B,C))
-~
> AN/ A @
/ -
/T Tm e e
copy =, / ~~.
/ X
bk _ — _Evaluation = 1
* - ~ -~ ~
‘A 2 ~ . 7 S N
/ (onATable) \ move(C, Table) / (onATable)
(on B Table) j >l (on B Table) Al|B]|[C
\ (onCA) / . (onCTable) /
~ e ~ 7
~ e -

~ - —’

Selection Space

 Important state structures created by Soar

— Nimpasse tie, Aitem 01 02 ...

e Evaluate-operator

1. Instantiated with every item (every tied operator) that has
not been evaluated
(<s> "operator <o0>)
(<o> ™name evaluate-operator
Asuperoperator <so>)

2. Usually randomly select between them (some exceptions)
3. Create "evaluation structure on selection state

Evaluate State Structure

 When evaluate-operator is selected, create:
— (<s> Mevaluation <e>)
— (<e> Asuperoperator <i>)
— (<o> Mevaluation <e> # on evaluate-operator
— Asuperstate <ss> # task state
— Asuperproblem space <ps>)

e Evaluate-operator terminates when a value is
created on the associate evaluation
— (<e> Mvalue true)

Evaluate-operator Substate

e Create a copy of the task state
— Includes *name, *desired

— Mproblem-space determines how to create copy
 Many flags to control what to copy and how deep
e Ndefault-state-copy vyes is default

e |f don’t create copy, original state will change

Evaluate-operator Processing

1. Force selection of a copy of the operator being evaluated
2. Operator application rule should fire and generate new state
— Requires action model: operator application rule for simulating operator
— If doesn’t, will eventually get impasses that lead to a failed evaluation.
3. If there is state evaluation knowledge, it adds augmentation to state
— Mnumeric-value, *symbolic-value, *expected-value
— Copied up to the evaluation structure in the selection space
— Leads to evaluate-operator terminating

By default, elaboration rules aggressively convert evaluations to
preferences.

— Evaluates only as many operators as necessary to generate preferences
to break the tie.

e Chunks are learned for computing evaluations and preferences

Overview One-step Look-ahead
Using Selection Problem Space

N
\\Tie Impasse

(on A Table)) ‘\ B
(on B Table) :E ! move(C, Table) > move(C, B)
(on CA) move(C, T/f‘:'b'e? move(C, Table) > move(B, C) ¢
' : move(B, C) = move(C, B) Goal
,CQ) g
B b N~
h - \~~_~_—~______~~
/ _l, / ~ N =~ ~ o
/ I \ \
/ Evaluation = 1 Evaluation =0 Evaluation =0
valuate-operator(move(C, Table)fvaluate-operator mci\?_(_;\B Evaluate- operator(e(B,C))
-~
> AN/ A @
/ .
/e
Copy "’ / S~ -
0" / \
k _ — _Evaluation = 1
. P ~ - ~
‘A 2 S . 7 S N
/ (onATable) \ move(C, Table) / (onATable)
(on B Table) j >l (on B Table) Al|B]|[C
\ (onCA) / . (onCTable) /
~ e ~ - ~ 7

~ - —’

Requirements to Use Selection Space

Source in selection.soar!
— Explains the following requirements

Have a "problem-space structure on the state
Have a Mdesired structure on the state
nclude rules that compute failure/success/evaluation.

Have rules that simulate action of operators
— This is an action model
— Only apply when in state with

Aname evaluate-operator

Depth-First Search in Soar

If no evaluation of the state, continues in substate
— |If sufficient knowledge, selects and applies operator

— If insufficient knowledge, get a tie impasse and recursively
get depth-first search.

The state “open” list is represented as the stack of
substates.

Elaboration rules pass success up the stack to avoid
extra search.

No guarantee of finding shortest path.
Chunking is necessary to avoid repeated search.

Overview One-step Look-ahead
Using Selection Problem Space

N
\\Tie Impasse
B

-

—

-
(@)

(on A Table)

(on B Table) !
(on CA) move(lt, Table
l 7

Goal

—

Lo
Qvelp, C
n bo
A
: / _/
: /
5 ’
valuate-operator(move(C, Table))
E I’\\ S
: o/
: copy //
: /
B / VARRY
/ AllB]||C / — \Tie Impasse
b _ movelg; B) !
T ~~ move(C, Table) .-~ >~ ! '
“/" (on ATable) \\ / (onATable) mOVEGA, B) :
((on B Table) j >((on B Table)] i - :
(onCA) / (on C Table) / h
A ~ s’ N N / VeQ‘B, C) 1
Yl
\ Y

o/

Iterative Deepening

Include an evaluation-depth in the selection
space
Evaluate all of the task operators to that depth

— Start with depth =1

— In each recursive selection substate, decrement
depth

Terminate if achieve goal

Increment depth when all task operators have
been evaluated

Deep Search in Soar:
Iterative A*

Assumes task state structure

— Graph structure of *waypoints, with a *current-location
Every evaluation maintains

— Path-cost: g(x)

— Estimated-cost: h(x)

— Total-estimated-cost: f(x) = g(x) + h(x)
Prefer an evaluate-operator to another

— If it doesn’t have an estimated-cost # get initial values

— If its total-estimated-cost is less than the others # pursue best
Final-cost for an operator is when estimated cost is O
Create a preference if final-cost(o1) < total-estimated-cost(02)
Complex rules and operators combine estimates from substates

— Add operators: compute-evaluations, compare-evaluations, compute-
best-total-estimate

2: Path: 1.4; Estimated : 2.3; Total 3.7

Page 13

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4

Page 14

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4
1 4: Path: 1.4; Estimated: 1.0; Total 2.4

Page 15

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4
1 4: Path: 1.4; Estimated: 1.0; Total 2.4
4: Path: 2.8; Estimated: 1.0 Total 3.8

Page 16

2: Path: 1.4; Estimated : 2.3; Total 3.7
3: Path: 1; Estimated: 1.4; Total 2.4

4: Path: 2.8; Estimated: 1.0 Total 3.8
3: Path: 3.3; Estimated: 1.0 Total 4.3

Page 17

2: Path: 1.4; Estimated : 2.3; Total 3.7

4: Path: 2.8; Estimated: 1.0 Total 3.8
3: Path: 3.3; Estimated: 1.0 Total 4.3
2: Path 3.7; Estimated: 0.0 Final: 3.7

Page 18

Nuggets and Coal

e Nuggets:

— Provides task-independent knowledge for
controlling deliberate operator evaluation

— Plays well with chunking
e Coal

— Requires some knowledge of conventions

— More advanced methods are pretty complex

	The Selection Space�
	Overview One-step Look-ahead �Using Selection Problem Space
	Selection Space
	Evaluate State Structure
	Evaluate-operator Substate
	Evaluate-operator Processing
	Overview One-step Look-ahead �Using Selection Problem Space
	Requirements to Use Selection Space
	Depth-First Search in Soar
	Overview One-step Look-ahead �Using Selection Problem Space
	Iterative Deepening
	Deep Search in Soar:� Iterative A*
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Nuggets and Coal

