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Goal 

• Provide an architectural support so that: 
– Agent uses (possibly heuristic) background knowledge 

to initially make action selections 
• Might be non determinism in the environment that is hard 

to build a good theory of.   
– Learning improves action selections based on 

experienced-based reward 
• Captures regularities that are hard to encode by hand. 

 
• Approach: Use chunking to learn RL rules and 

then use reinforcement learning to tune behavior. 
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Deliberate Background Knowledge  
for Action Selection 

• Examples: 
– Compute the likelihood of success of different actions using 

explicit probabilities. 
– Look-ahead internal search using an action model to predict 

future result from an action 
– Retrieve from episodic memory of similar situation 
– Request from instructor 

• Characteristics 
– Multiple steps of internal actions 
– Not easy to incorporate accumulated experienced-based 

reward 
• Soar Approach 

– Calculations in a substate of a tie impasse 
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Each player starts with five dice. Players take turns making bids as to 
number of dice under cups. 

Bid 4 2’s 

Bid 6 6’s 

Players hide dice under cups and shake. Players must increase bid or challenge. 
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Players can “push” out a subset of their 
dice and reroll when bidding. 

Bid 7 2’s 
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Player can Challenge previous bid. 
All dice are revealed 

Challenge! 

I bid 7 2’s 

Challenge fails 
player loses die 



Evaluation with Probability Calculation 
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compute-bid- 
probability 

Tie Impasse 

Evaluation = .3 

Evaluate(challenge) Evaluate(bid: 6[6]) 
Evaluation = .8 Evaluation = .1 

.1 
Evaluation = .3 

Challenge = .8 
Bid: 6[4]   = .3 
Bid: 6[6]   = .1 

Bid: 6[4] 

Challenge 

Bid: 6[6] 

Evaluate(bid: 6[4]) 

.3 

Evaluation Substate 
Selection Problem Space 



Using Reinforcement Learning 
 for Operator Selection 

• Reinforcement Learning 
– Choosing best action based on expected value 
– Expected value updated based on received reward and expected future 

reward 
• Characteristics 

– Direct mapping between situation-action and expected value (value function) 
– Does not use any background knowledge 
– No theory of original of initial values (usually 0) or value-function 

• Soar Approach 
– Operator selection rules with numeric preferences 
– Reward received base on task performance 
– Update numeric preferences based on experience 

• Issues: 
– Where do RL-rules come from? 

• Conditions that determine the structure of the value function 
• Actions that initialize the value function 
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Value Function in Soar 

• Rules map from situation-action to expected value. 
– Conditions determine generality/specificity of mapping  
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Approach:  
Using Chunking over Substate 

• For each preference created in the substate, 
chunking (EBL) creates a new RL rule 
– Actions are numeric preference 
– Conditions based on working memory elements 

tested in substate 
 

• Reinforcement learning tunes rules based on 
experience 
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Two-Stage Learning 

11 

? 

Processing in Substates 
• Deliberately evaluate alternatives 

• Use probabilities, heuristics, model 
• Uses multiple operator selections and 

Select action 
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Deliberate Processing in Substates 
• Always available for new situations 

• Can expand to any number of players 
 

RL rules updated based 
on agent’s experience 

# 

# 



Evaluation with Probability Calculation 
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compute-bid- 
probability 

Tie Impasse 

Evaluation = .3 

Evaluate(challenge) Evaluate(bid: 6[6]) 
Evaluation = .8 Evaluation = .1 

.1 
Evaluation = .3 

Challenge = .8 
Bid: 6[4]   = .3 
Bid: 6[6]   = .1 

Bid: 6[4] 

Challenge 

Bid: 6[6] 

Evaluate(bid: 6[4]) 

.3 

Create rule for each result 
   adds entry to value function 

Evaluation Substate 
Selection Problem Space 



Learning RL-rules 
Bid: 6 4’s? 
 
Last bid: 5 4’s 
 
Last player: 
    4 unknown 
 
Shared info 
    9 unknown 
    Pushed dice 
        3 3 4 4  
 
Dice in my cup 
     3 4 4  
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Using only probability calculation 

4 4’s Need 2 4’s 

2 4’s out of 
9 unknown? .3 

If 9 unknown dice, 2 4’s pushed and 2 
4’s under my cup, and considering 
biding 6 4’s, expected value is .3 



Learning RL-rules 
Bid: 6 4’s? 
 
Last bid: 5 4’s 
 
Last player: 
    4 unknown 
 
Shared info 
    9 unknown 
    Pushed dice 
        3 3 4 4  
 
Dice in my cup 
     3 4 4  
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Using probability and model  

7 unknown 
2 4’s shared 
2 4’s under his cup 

Need 1 4 out of 
5 unknown .60 

If 9 unknown dice, 2 4’s pushed and 2 4’s under 
my cup, and previous player had 4 unknown dice 
and bid 5 4’s, and I’m considering biding 6 4’s, the  
expected value is .60 



Research Questions 

• Does RL help? 
– Do agents improve with experience? 
– Can learning lead to better performance than the 

best hand-coded agent? 
 

• Does initialization of RL rules improve 
performance? 

• How does background knowledge affect rules 
learned by chunking and how do they affect 
learning? 

Page 15 



Evaluation of Learning 
• 3-player games  

– Against best non learning player agent 
• Heuristics and opponent model  

– Alternate 1000 game blocks of testing and training  
• Metrics 

– Speed of learning & asymptotic performance 
• Agent variants: 

– B: baseline 
– H: with heuristics 
– M: with opponent model 
– MH: with opponent model and heuristics 
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Learning Agent Comparison 
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• Best agents do significantly better than hand coded. 
• H and M give better initial performance than B. 
• P alone speed learning (smaller state space). 
• M slows learning (much larger state space).  
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Learning Agents with Initial Values = 0 
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Number of Rules Learned 
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Nuggets and Coal 
• Nuggets:  

– First combination of chunking/EBL with RL 
• Transition from deliberate to reactive to learning 
• Potential story for origin of value functions for RL 

– Intriguing idea for creating evaluation functions for game-
playing agents 

• Complex deliberation for novel and rare situations  
• Reactive RL learning for common situations 

• Coal  
– Sometimes background knowledge slows learning… 
– Appears we need more than RL! 
– How recover if learn very general RL rules? 
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