
Integrating Background Knowledge and
Reinforcement Learning for

Action Selection

John E. Laird
Nate Derbinsky

Miller Tinkerhess

Goal

• Provide an architectural support so that:
– Agent uses (possibly heuristic) background knowledge

to initially make action selections
• Might be non determinism in the environment that is hard

to build a good theory of.
– Learning improves action selections based on

experienced-based reward
• Captures regularities that are hard to encode by hand.

• Approach: Use chunking to learn RL rules and

then use reinforcement learning to tune behavior.

Page 2

Deliberate Background Knowledge
for Action Selection

• Examples:
– Compute the likelihood of success of different actions using

explicit probabilities.
– Look-ahead internal search using an action model to predict

future result from an action
– Retrieve from episodic memory of similar situation
– Request from instructor

• Characteristics
– Multiple steps of internal actions
– Not easy to incorporate accumulated experienced-based

reward
• Soar Approach

– Calculations in a substate of a tie impasse
 Page 3

Page 4

Each player starts with five dice. Players take turns making bids as to
number of dice under cups.

Bid 4 2’s

Bid 6 6’s

Players hide dice under cups and shake. Players must increase bid or challenge.

Page 5

Players can “push” out a subset of their
dice and reroll when bidding.

Bid 7 2’s

Page 6

Player can Challenge previous bid.
All dice are revealed

Challenge!

I bid 7 2’s

Challenge fails
player loses die

Evaluation with Probability Calculation

Page 7

compute-bid-
probability

Tie Impasse

Evaluation = .3

Evaluate(challenge) Evaluate(bid: 6[6])
Evaluation = .8 Evaluation = .1

.1
Evaluation = .3

Challenge = .8
Bid: 6[4] = .3
Bid: 6[6] = .1

Bid: 6[4]

Challenge

Bid: 6[6]

Evaluate(bid: 6[4])

.3

Evaluation Substate
Selection Problem Space

Using Reinforcement Learning
 for Operator Selection

• Reinforcement Learning
– Choosing best action based on expected value
– Expected value updated based on received reward and expected future

reward
• Characteristics

– Direct mapping between situation-action and expected value (value function)
– Does not use any background knowledge
– No theory of original of initial values (usually 0) or value-function

• Soar Approach
– Operator selection rules with numeric preferences
– Reward received base on task performance
– Update numeric preferences based on experience

• Issues:
– Where do RL-rules come from?

• Conditions that determine the structure of the value function
• Actions that initialize the value function

Page 8

Value Function in Soar

• Rules map from situation-action to expected value.
– Conditions determine generality/specificity of mapping

Page 9

.23
.04

.51

-.31

-.1
.11

-.43

.34
-.54

-.61

-.11

Approach:
Using Chunking over Substate

• For each preference created in the substate,
chunking (EBL) creates a new RL rule
– Actions are numeric preference
– Conditions based on working memory elements

tested in substate

• Reinforcement learning tunes rules based on
experience

Page 10

Two-Stage Learning

11

?

Processing in Substates
• Deliberately evaluate alternatives

• Use probabilities, heuristics, model
• Uses multiple operator selections and

Select action

Deliberate Processing in Substates
• Always available for new situations

• Can expand to any number of players

RL rules updated based
on agent’s experience

Evaluation with Probability Calculation

Page 12

compute-bid-
probability

Tie Impasse

Evaluation = .3

Evaluate(challenge) Evaluate(bid: 6[6])
Evaluation = .8 Evaluation = .1

.1
Evaluation = .3

Challenge = .8
Bid: 6[4] = .3
Bid: 6[6] = .1

Bid: 6[4]

Challenge

Bid: 6[6]

Evaluate(bid: 6[4])

.3

Create rule for each result
 adds entry to value function

Evaluation Substate
Selection Problem Space

Learning RL-rules
Bid: 6 4’s?

Last bid: 5 4’s

Last player:
 4 unknown

Shared info
 9 unknown
 Pushed dice
 3 3 4 4

Dice in my cup
 3 4 4

Page 13

Using only probability calculation

4 4’s Need 2 4’s

2 4’s out of
9 unknown? .3

If 9 unknown dice, 2 4’s pushed and 2
4’s under my cup, and considering
biding 6 4’s, expected value is .3

Learning RL-rules
Bid: 6 4’s?

Last bid: 5 4’s

Last player:
 4 unknown

Shared info
 9 unknown
 Pushed dice
 3 3 4 4

Dice in my cup
 3 4 4

Page 14

Using probability and model

7 unknown
2 4’s shared
2 4’s under his cup

Need 1 4 out of
5 unknown .60

If 9 unknown dice, 2 4’s pushed and 2 4’s under
my cup, and previous player had 4 unknown dice
and bid 5 4’s, and I’m considering biding 6 4’s, the
expected value is .60

Research Questions

• Does RL help?
– Do agents improve with experience?
– Can learning lead to better performance than the

best hand-coded agent?

• Does initialization of RL rules improve
performance?

• How does background knowledge affect rules
learned by chunking and how do they affect
learning?

Page 15

Evaluation of Learning
• 3-player games

– Against best non learning player agent
• Heuristics and opponent model

– Alternate 1000 game blocks of testing and training
• Metrics

– Speed of learning & asymptotic performance
• Agent variants:

– B: baseline
– H: with heuristics
– M: with opponent model
– MH: with opponent model and heuristics

Page 16

Learning Agent Comparison

Page 17

• Best agents do significantly better than hand coded.
• H and M give better initial performance than B.
• P alone speed learning (smaller state space).
• M slows learning (much larger state space).

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20

W
in

s o
ut

 o
f 1

00
0

Trials (1000 Games/Trial)

B

M

H

MH

Learning Agents with Initial Values = 0

Page 18

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20

W
in

s o
ut

 o
f 1

00
0

Trials (1000 Games/Trial)

B-0

M-0

H-0

MH-0

Number of Rules Learned

Page 19

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20

N
um

be
r o

f R
ul

es
 (1

00
0s

)

Trials (1000 Games/Trial)

B

M

H

MH

Nuggets and Coal
• Nuggets:

– First combination of chunking/EBL with RL
• Transition from deliberate to reactive to learning
• Potential story for origin of value functions for RL

– Intriguing idea for creating evaluation functions for game-
playing agents

• Complex deliberation for novel and rare situations
• Reactive RL learning for common situations

• Coal
– Sometimes background knowledge slows learning…
– Appears we need more than RL!
– How recover if learn very general RL rules?

Page 20

	Integrating Background Knowledge and Reinforcement Learning for �Action Selection�
	Goal
	Deliberate Background Knowledge �for Action Selection
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Evaluation with Probability Calculation
	Using Reinforcement Learning� for Operator Selection
	Value Function in Soar
	Approach: �Using Chunking over Substate
	Two-Stage Learning
	Evaluation with Probability Calculation
	Learning RL-rules
	Learning RL-rules
	Research Questions
	Evaluation of Learning
	Learning Agent Comparison
	Learning Agents with Initial Values = 0
	Number of Rules Learned
	Nuggets and Coal

