Competence-Preserving Retention of Learned Knowledge in Soar's Working and Procedural Memories

Nate Derbinsky, John E. Laird

University of Michigan

Motivation

Goal. Agents that exhibit human-level intelligence and persist autonomously for long periods of time (days – months).

Problem. Extended tasks that involve amassing large amounts of knowledge can lead to performance degradation.

Common Approach

Forgetting. Selectively retain learned knowledge.

Challenge. Balance...

- agent task competence &
- computational resource growth across a variety of tasks.

This Work

Hypothesis. Useful to forget a memory if...

- 1. not useful (via base-level activation) &
- 2. likely can *reconstruct* if necessary

Evaluation. 2 complex tasks, 2 memories in Soar

Mobile Robot Navigation

Working Memory

- bounds decision time
- completes task
 - > 1 hour

Multi-Player Dice

Procedural Memory

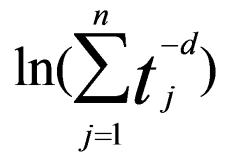
- 50% memory reduction
- competitive play
 - > days

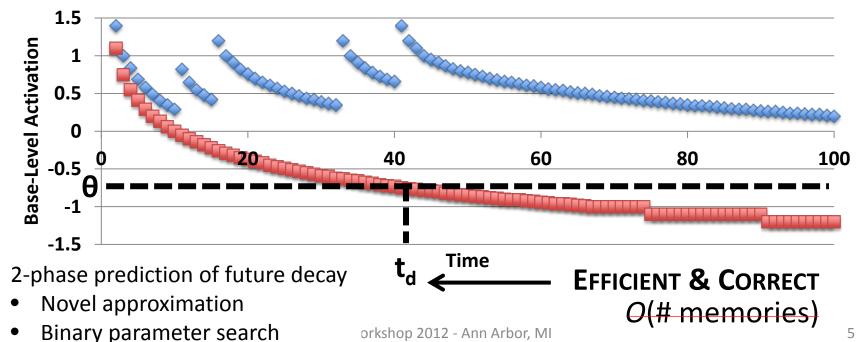
Task Independent; Implemented in Soar v9.3.2

Base-Level Activation

(Anderson et al., 2004)

Predict future usage via history Used to bias ambiguous semanticmemory retrievals (AAAI '11)

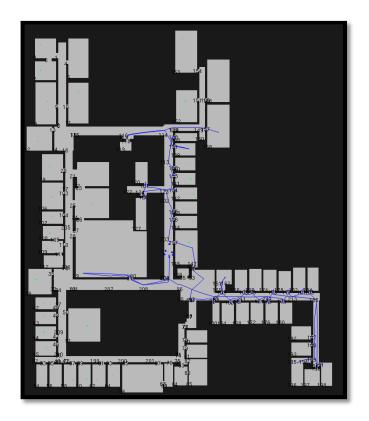




Task #1: Mobile Robotics

Simulated Exploration & Patrol

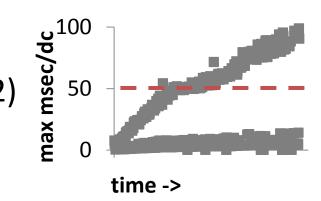
- 3rd floor, BBB Building, UM
 - 110 rooms
 - 100 doorways
- Builds map in memory from experience



Problem: Decision Time

Issue. Large working memory

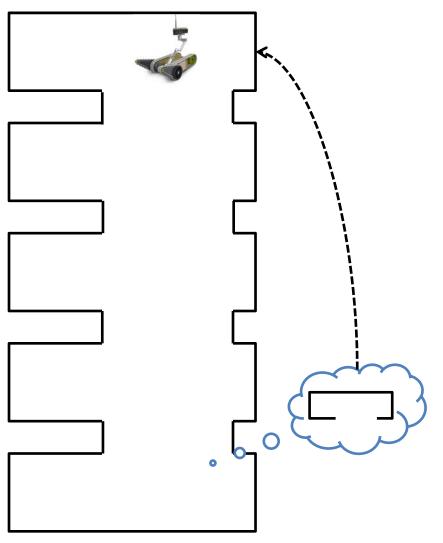
- Minor: rule matching (Forgy, 1982)
- Major: episodic reconstruction episode size ~ working-memory size



Forgetting Policy. Memory hierarchy

- Automatically remove from WM the o-supported augmentations of LTIs that have not been tested recently/frequently (all or nothing w.r.t. LTI)
- 2. Agent deliberately performs retrieve commands from SMem as necessary

Map Knowledge



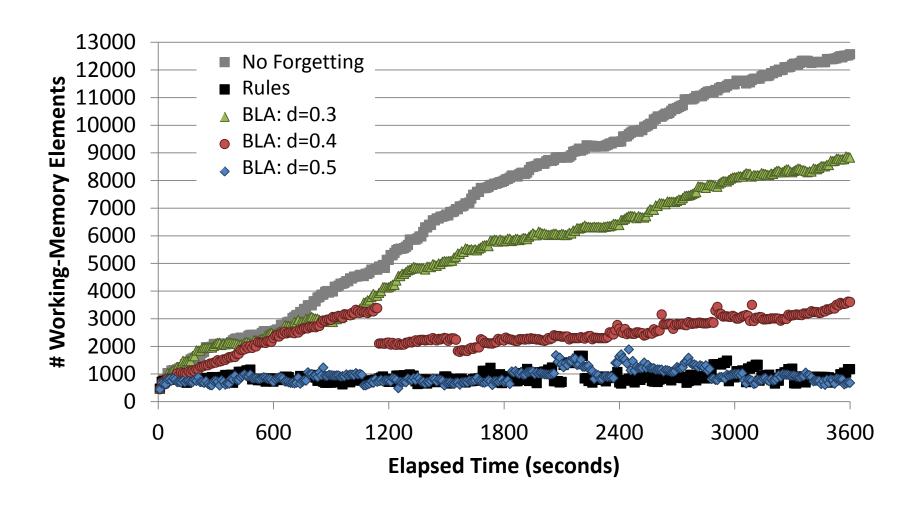
Room Features

- Position, size
- Walls, doorways
- Objects
- Waypoints

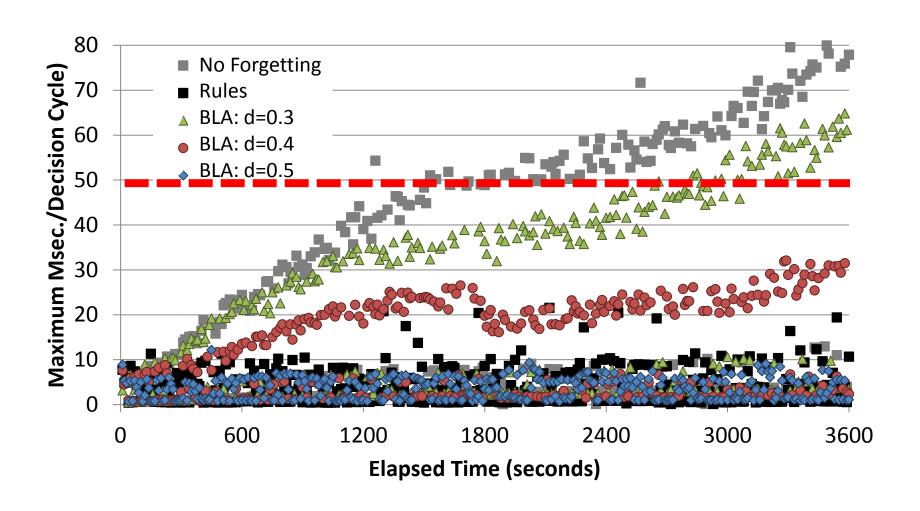
Usage

- Exploration (-->SMem)
- Planning/navigation (<--SMem)

Results: Working-Memory Size



Results: Decision Time

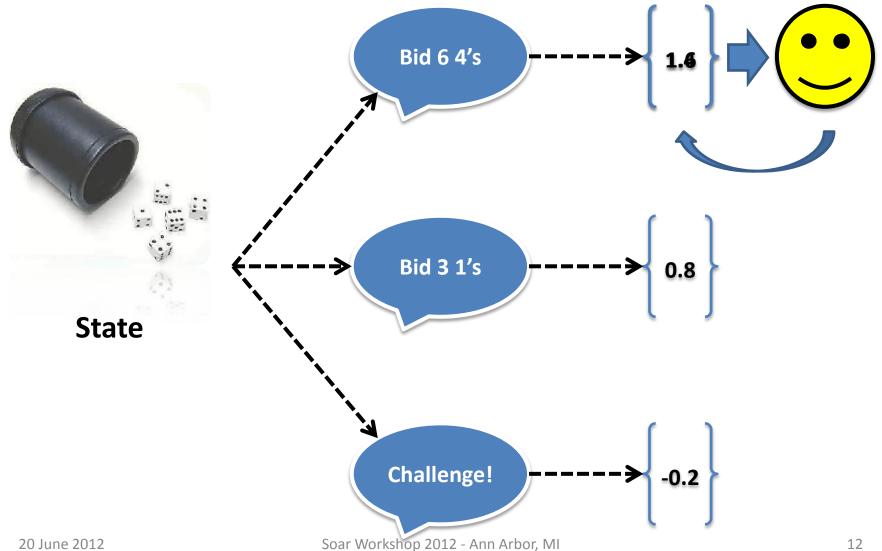


Task #2: Liar's Dice

- Complex rules, hidden state, stochasticity
 - Rampant uncertainty

- Agent learns via reinforcement learning (RL)
 - Large state space (10⁶-10⁹ for 2-4 players)

Reasoning --> Action Knowledge



Problem: Memory Growth

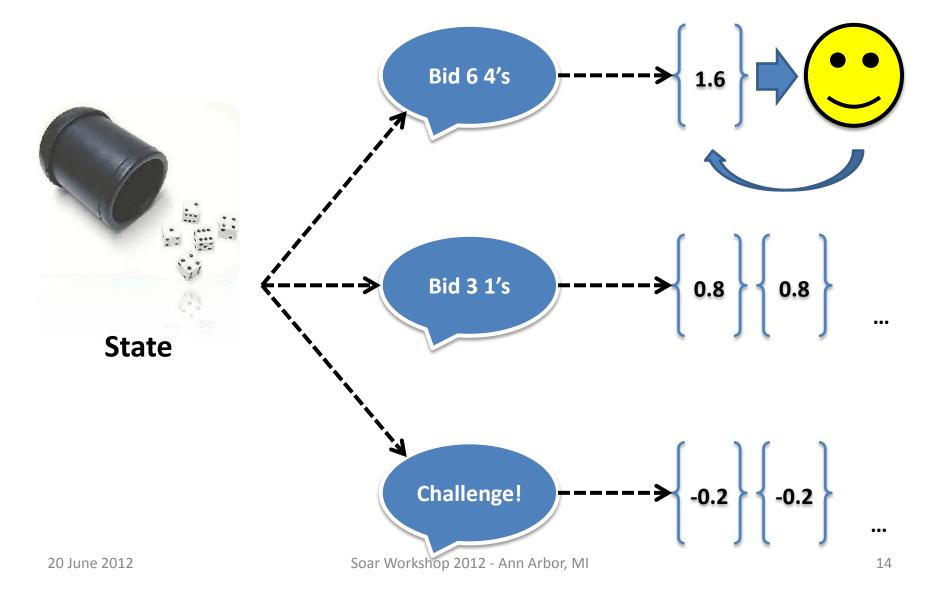
Issue. RL value-function representation: (s,a)->#

- Soar: procedural knowledge (RL rules)
- Many possible actions per turn; at most feedback for a single action -> many RL rules representing redundant knowledge

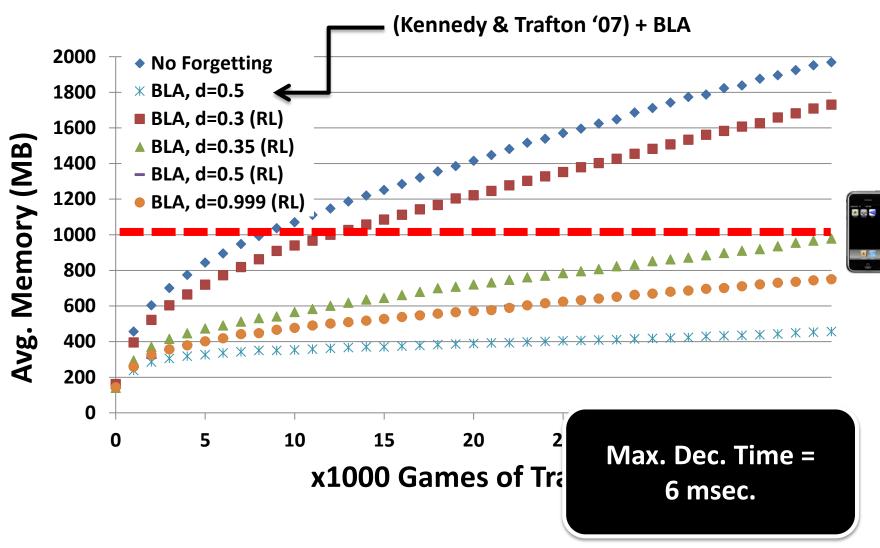
Forgetting Policy. Keep what you can't reconstruct

- 1. Automatically excise RL chunks that have not been updated via RL and haven't fired recently/frequently
- 2. New chunks are learned via reasoning as necessary

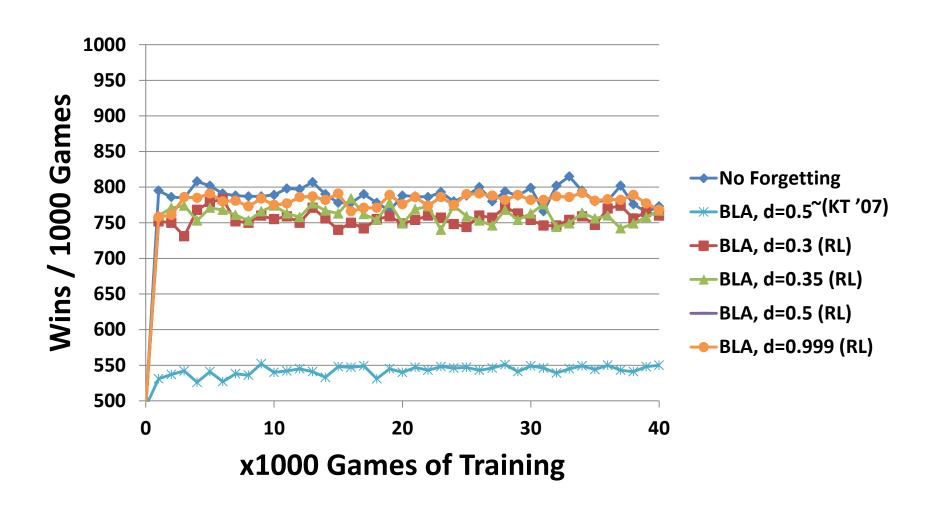
Forgetting Action Knowledge



Results: Memory Usage



Results: Competence



Evaluation

Nuggets

- Pragmatic forgetting policies for Soar: extends space and temporal extent of domains
 - Implemented in Soar v9.3.2
- Efficient forgetting code can be applied to any instancebased memory

Coal

- Limited domain evaluation
- Yet another set of parameters (d, θ) x 2
- EpMem/SMem?

For more details, see two papers in proceedings of ICCM 2012