Functional Interactions between Memory and Recognition Judgments

Justin Li

Computer Science and Engineering University of Michigan justinnh@umich.edu

2012-06-20

Long-lived agents accumulate large amounts of knowledge

- Long-lived agents accumulate large amounts of knowledge
- Memory searches are slow and potentially unbounded

- Long-lived agents accumulate large amounts of knowledge
- Memory searches are slow and potentially unbounded

- Long-lived agents accumulate large amounts of knowledge
- Memory searches are slow and potentially unbounded
- Comprehensive searches in every scenario is infeasible

- Long-lived agents accumulate large amounts of knowledge
- Memory searches are slow and potentially unbounded
- Comprehensive searches in every scenario is infeasible

Problem: How can the agent efficiently retrieve knowledge from an ever-growing memory?

- Long-lived agents accumulate large amounts of knowledge
- Memory searches are slow and potentially unbounded
- Comprehensive searches in every scenario is infeasible

Problem: How can the agent efficiently retrieve knowledge from an ever-growing memory?

One solution: Only search memory if there is high probability of a successful retrieval

- Long-lived agents accumulate large amounts of knowledge
- Memory searches are slow and potentially unbounded
- Comprehensive searches in every scenario is infeasible

Problem: How can the agent efficiently retrieve knowledge from an ever-growing memory?

One solution: Only search memory if there is high probability of a successful retrieval

In particular: Use the *recognition judgment* as a cheap proxy for whether a retrieval will be successful

Outline

- What is recognition?
- How do we calculate recognition judgments in Soar?
- How do we represent recognition judgments in Soar?
- How do we evaluate this system?
- How does the system performance in a WSD task?

Recognition A binary signal indicating a previously (un)seen feature (WME), with respective to specific memories

Recognition A binary signal indicating a previously (un)seen feature (WME), with respective to specific memories

Continue with memory retrieval only if the cue is recognized.

Recognition A binary signal indicating a previously (un)seen feature (WME), with respective to specific memories

Continue with memory retrieval only if the cue is recognized.

Recognition A binary signal indicating a previously (un)seen feature (WME), with respective to specific memories

Continue with memory retrieval only if the cue is recognized.

Key idea: reuse and build off long-term memory data structures and processes

► EpMem reuses WME ID, necessary for storage optimizations

Recognition A binary signal indicating a previously (un)seen feature (WME), with respective to specific memories

Continue with memory retrieval only if the cue is recognized.

- EpMem reuses WME ID, necessary for storage optimizations
- SMem reuses attribute counters, necessary for retrieval optimizations

Recognition A binary signal indicating a previously (un)seen feature (WME), with respective to specific memories

Continue with memory retrieval only if the cue is recognized.

Key idea: reuse and build off long-term memory data structures and processes

- EpMem reuses WME ID, necessary for storage optimizations
- SMem reuses attribute counters, necessary for retrieval optimizations

Both judgments are calculated automatically at EpMem storage time

2012-06-20

Functional Interactions between Memory and Recognition Judgments

How to Represent Recognition Information?

 Representation 1: WME from ^{s, ep}mem to parent, with identical attribute names

How to Represent Recognition Information?

. . .

. . .

-->

- Representation 1: WME from ^{s,ep}mem to parent, with identical attribute names
- Representation 2: Extend RETE representation to include bit-array of recognition information

sp {recognition*rule
(state <s> ^foo.bar
 :epmem-recognized)

Frugality By how much does recognition slow down the decision cycle on average?

- Frugality By how much does recognition slow down the decision cycle on average?
- Predictiveness How well does recognition reflect of whether knowledge exists in memory?

- Frugality By how much does recognition slow down the decision cycle on average?
- Predictiveness How well does recognition reflect of whether knowledge exists in memory?
- Interoperability

- Frugality By how much does recognition slow down the decision cycle on average?
- Predictiveness How well does recognition reflect of whether knowledge exists in memory?
- Interoperability
 - Task Performance Is task performance negatively affected?

- Frugality By how much does recognition slow down the decision cycle on average?
- Predictiveness How well does recognition reflect of whether knowledge exists in memory?
- Interoperability
 - Task Performance Is task performance negatively affected?
 - Memory Retrievals Is the number of retrievals reduced by using recognition?

- Frugality By how much does recognition slow down the decision cycle on average?
- Predictiveness How well does recognition reflect of whether knowledge exists in memory?
- Interoperability
 - Task Performance Is task performance negatively affected?
 - Memory Retrievals Is the number of retrievals reduced by using recognition?
 - Running Time How is overall running time affected?

The Word Sense Disambiguation (WSD) Task

- Problem: Assign meaning (sense) to polysemous word, given sentence context:
 - He ran the race
 - He ran the code
- Given: sentence parse tree and ambiguous word
- Provide: predicted sense of the word
- Receive: yes/no; correct sense of the word
- Run on all sentences in SemCor dataset

WSD Agent Design

Agent begins with empty episodic and semantic memories

- 1. Query episodic memory using parse context
 - If retrieval succeeds, use retrieved meaning
- 2. Else query semantic memory (without context)
 - If retrieval succeeds, use retrieved meaning
- 3. Else return "Don't Know"

On feedback, store true meaning in memories

When using recognition, don't query memory if recognition fails

Agent always returns "Don't Know"

- Baseline: No recognition judgment is made
- Calculated: Recognition judgment is calculated but not represented to the agent
- Represented: Recognition judgment is calculated and represented to the agent

Condition	WME (msec)	RETE (msec)
Baseline		
Calculated		
Represented		

Agent always returns "Don't Know"

- Baseline: No recognition judgment is made
- Calculated: Recognition judgment is calculated but not represented to the agent
- Represented: Recognition judgment is calculated and represented to the agent

Condition	WME (msec)	RETE (msec)
Baseline	0.137	
Calculated	0.142	
Represented	0.654	

Agent always returns "Don't Know"

- Baseline: No recognition judgment is made
- Calculated: Recognition judgment is calculated but not represented to the agent
- Represented: Recognition judgment is calculated and represented to the agent

Condition	WME (msec)	RETE (msec)
Baseline	0.137	0.184
Calculated	0.142	0.191
Represented	0.654	0.196

Agent always returns "Don't Know"

- Baseline: No recognition judgment is made
- Calculated: Recognition judgment is calculated but not represented to the agent
- Represented: Recognition judgment is calculated and represented to the agent

Condition	WME (msec)	RETE (msec)
Baseline	0.137	0.184
Calculated	0.142	0.191
Represented	0.654	0.196

These results are highly domain specific

Is Recognition Predictive?

- 100% predictive in WSD task
 - Neither false positives nor false negatives

Is Recognition Predictive?

- 100% predictive in WSD task
 - Neither false positives nor false negatives
- False positives are possible in general

Is task performance negatively affected?

Is task performance negatively affected?

Task performance remains the same

Is task performance negatively affected?

Task performance remains the same

Does recognition reduce number of retrievals?

Is task performance negatively affected?

Task performance remains the same

Does recognition reduce number of retrievals?

- Episodic memory retrievals decrease by 70%
- Semantic memory retrievals decrease by 40%

Is task performance negatively affected?

Task performance remains the same

Does recognition reduce number of retrievals?

- Episodic memory retrievals decrease by 70%
- Semantic memory retrievals decrease by 40%

How is overall running time affected?

Is task performance negatively affected?

Task performance remains the same

Does recognition reduce number of retrievals?

- Episodic memory retrievals decrease by 70%
- Semantic memory retrievals decrease by 40%

How is overall running time affected?

Agent completes WSD task with 4x less time

Is task performance negatively affected?

Task performance remains the same

Does recognition reduce number of retrievals?

- Episodic memory retrievals decrease by 70%
- Semantic memory retrievals decrease by 40%

How is overall running time affected?

Agent completes WSD task with 4x less time

These results are highly domain specific

Nuggets and Coal

Nuggets

- Implemented recognition judgments for semantic and episodic memory
- Expanded RETE and Soar syntax to match binary bits
- Evaluation on WSD task
- Possibilities for other meta-memory information

Coal

- Only evaluated on a single task
- Don't (yet) entirely understand effect of RETE changes
- Slightly hacky implementation; not ready for integration into trunk

Thank You

For details: Li, Derbinsky, Laird (2012). Functional Interactions Between Memory and Recognition Judgments. In *Proceedings of the 26th AAAI Conference on Artificial Intelligence*, Toronto, Canada.

	Not Recognized by EpMem	Recognized by EpMem
Not Recognized	new feature	old, un-stored
by SMem		feature
Recognized	old feature in	old feature in
by SMem	new context	old context

SMem

EpMem

2012-06-20

EpMem

