
Delimited Continuations 
in Soar 

(How to think about several things at once 
without getting confused) 



Clarification: 
Concurrency vs. Parallelism 

Parallelism: 
• like having two or more brains 
• does the same thing faster 
• the opportunity of distributing computation 
Concurrency: 
• like having two or more hands 
• usually has context switching costs 
• controlling attention to interleave tasks 
• the problem of dealing with distributed things 

 



Benefits of easy-to-use 
concurrency 

• Juggle tasks 
• Interleave thinking about 

 "what I'm doing over here" 
 with thinking about 
 "what they're doing over there" 

• Take the perspective of everything you meet 
• Explicitly balance deliberating and executing 

 



Concurrency Problems 

• Real-time performance 
The supertask needs to run the 
subtask "often enough" 

• Where to put the state 
The subtask needs to choose a 
stable place to store state 

 



What delimited cont's are like 

1. operating system 
2. kernel/userspace 

boundary 
3. userspace apps 
4. system calls 

 



What delimited cont's are like 

1. operating system 
2. kernel/userspace 

boundary 
3. userspace apps 
4. system calls 
5. userspace stack 

(delimited 
continuation) 

 Shift 

Reset 



Lambda calculus with shift and 
reset 

Based on "An Operational Foundation for Delimited Continuations"  

by Biernacka, Biernacki and Danvy 

run[t_] := eval[t, empty, hole, hole] 

eval[int[n_], e_, C1_, C2_] := cont1[C1, int[n], C2] 

eval[var[x_], e_, C1_, C2_] := cont1[C1, lookup[e, x], C2] 

eval[lam[x_, t_], e_, C1_, C2_] := cont1[C1, clo[x, t, e], C2] 

eval[app[t0_, t1_], e_, C1_, C2_] := eval[t0, e, appk1[t1, e, C1], C2] 

eval[succ[t_], e_, C1_, C2_] := eval[t, e, succk[C1], C2] 

eval[shift[x_, t_], e_, C1_, C2_] :=  

 eval[t, bind[x, cap[C1], e], hole, C2] 

eval[reset[t_], e_, C1_, C2_] := eval[t, e, hole, compose[C1, C2]] 

cont1[hole, v_, C2_] := cont2[C2, v] 

cont1[appk1[t1_, e_, C1_], v_, C2_] := eval[t1, e, appk2[v, C1], C2] 

cont1[appk2[clo[x_, t_, e_], C1_], v_, C2_] :=  

 eval[t, bind[x, v, e], C1, C2] 

cont1[appk2[cap[C1p_], C1_], v_, C2_] := cont1[C1p, v, compose[C1, C2]] 

cont1[succk[C1_], int[v_], C2_] := cont1[C1, int[v + 1], C2] 

cont2[compose[C1_, C2_], v_] := cont1[C1, v, C2] 

cont2[hole, v_] := v 

 

• A simple 
(15 rules) 
first order 
operational 
semantics. 

• Easy to 
translate 
into Soar. 



Concurrency Example 
/* Decompression code */ 
    while (1) { 
        c = getchar(); 
        if (c == EOF) 
            break; 
        if (c == 123) { 
            len = getchar(); 
            c = getchar(); 
            while (len--) 
                emit(c); 
        } else 
            emit(c); 
    } 
    emit(EOF) 

/* Parser code */ 
    while (1) { 
        c = getchar(); 
        if (c == EOF) 
            break; 
        if (isalpha(c)) { 
            do { 
                add_to_token(c); 
                c = getchar(); 
            } while (isalpha(c)); 
            got_token(WORD); 
        } 
        add_to_token(c); 
        got_token(PUNCT); 
    } 



Demo 



Gold and Coal 

Gold: 
• Towards a general-purpose reusable library 

for concurrency in Soar 
• Implementing operational semantics of little 

languages in Soar is easy and fun 
• Can chunk over (cooperative) task time 

slices 
Coal 
• Example isn't particularly agentish 
• Currently fragile, brittle and arcane 

 



Future work 

• Build backtracking search via delimited 
cont's 

• More sophisticated schedulers  
(e.g. Kiselyov and Shan's ZipperFS) 

• Delimited cont's to implement a Discrete 
Event Simulations 

• Delimited continuations might offer a new 
mechanism for modularity in agents 

• Delimited cont's to build new operators 



Thank you very much 
The code is on github 

johnicholas@johnicholas.com 
http://github.com/johnicholas/learn_to_soar 



References 
"An Operational Foundation for Delimited Continuations in the CPS Hierarchy". Małgorzata Biernacka, 

Dariusz Biernacki, Olivier Danvy. BRICS Report Series RS-05-24 
 

"Coroutines in C", Simon Tatham. http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html 
 

"From Interpreter to Logic Engine by. Defunctionalization". Biernacki Dariusz. Danvy Olivier. BRICS 
Report Series. RS-04-5 
 

"Delimited continuations in operating systems" Oleg Kiselyov and Chung-chih Shan Proc. 
CONTEXT2007: 6th International and Interdisciplinary Conference on Modeling and Using 
Context. Roskilde, Denmark, August 20-24, 2007. Lecture Notes in Artificial Intelligence 4635, pp. 
291-302. 
 

http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html


Lambda calculus 
Based on BRICS-RS-05-24 

"An Operational Foundation for Delimited Continuations in the CPS Hierarchy"  

by Biernacka, Biernacki and Danvy 

 

eval[Literal[m_], env_, k_] := go[k, m] 

eval[Variable[x_], env_, k_] := go[k, Lookup[env, x]] 

eval[Lam[x_, exp_], env_, k_] := go[k, Closure[x, exp, env]] 

runfun[Closure[x_, exp_, env_], v_, k_] := eval[exp, Bind[x, v, env], k] 

eval[App[exp0_, exp1_], env_, k_] :=  

 eval[exp0, env, Appk1[exp1, env, k]] 

go[Appk1[exp1_, env_, k_], v_] := eval[exp1, env, Appk2[v, k]] 

go[Appk2[v1_, k_], v2_] := runfun[v1, v2, k] 

eval[Succ[exp_], env_, k_] := eval[exp, env, Succk[k]] 

go[Succk[k_], v_] := go[k, v + 1] 

go[Halt, v_] := v 

 



Strategies for concurrency: 
Michigan Style 

"Blow away" substates to context switch 
• Symmetrical, elegant, automatic 
• Programmers need to relax about their 

control of control flow 
• Subtasks still need to tuck state away 

somewhere ad-hoc to achieve continuity 
• Interruptions may prevent chunking 



Strategies for concurrency: 
NGS 

Maintain long-term goals as an explicit data 
structure rather than on the architectural 
stack 

• Goals can be non-hierarchical 
• Can switch tasks faster than Michigan (?) 
• Models expert performance; no learning 

story 
• Programmer needs to learn NGS library API 

 


	Delimited Continuations in Soar
	Clarification:�Concurrency vs. Parallelism
	Benefits of easy-to-use concurrency
	Concurrency Problems
	What delimited cont's are like
	What delimited cont's are like
	Lambda calculus with shift and reset
	Concurrency Example
	Demo
	Gold and Coal
	Future work
	Thank you very much
The code is on github
	References
	Lambda calculus
	Strategies for concurrency:
Michigan Style
	Strategies for concurrency:
NGS

