How to Use SVS

Joseph Xu
Soar Workshop 2012

History

Soar Visual Interface (SVI) — Scott Lathrop

Spatial Reasoning System (SRS) — Sam
Wintermute

Soar Visual System = SVI + SRS — Sam
Wintermute

SVS “lite” — What this presentation is on
— Kernel & SML integration

— Traded functionality for simplicity

Overview

SML Environment SVS Soar
anmanﬂr
— Commands
S1 Asvs S2
] Q|| o S2 ~command C1
- o < © o Aspatial-scene S3
= o ||l 2] g S3 ~child C2 C3
B2 o o || v C2 %id B1
L © C3 Aid B2
Bl | _
S'\nnn PV“\ Y\I’\ /
Scene Graph
@ S4 Nsys S5

agnt->SendSVSinput()

a B1 world ...
cB2p-0.1120
d B3

S5 ~command C4
Aspatial-scene S6

Scene Graph

‘World (<S> "\svs <svs>)
P[01,34,-12] | (<svs> "spatial-scene
R[0.0,0.0,1.7]
S[1.0,1.0,1.0] <scn>)
(<scn> ~Nid world
~child <c1>)
(<c1>"Md A
Rl Achild <c2>
3 Achild <c3>)
(<c2> 7id B)

(<c3>"id C)

Scene Graph Editing Language

Environment modifies SVS scene graph with
agent->SendSVSInput(“<sgel>")
Add an object named <o> as a child of <p>

— a <0> <p> vV <vertices> p <position> r <rotation>s
<scaling>

Change an object’s transforms or vertices

— € <0> v <vertices> p <position> r <rotation> s
<scaling>

Delete an object
— d<o>

Recommended Paradigm

void output_handler(smIRunEventld id, void *env,
Agent *a, smIPhase phase)
{
int ncmds = a->GetNumberCommands();
for (inti=0;i<ncmds; ++i) {
<handle output link commands>
}
<run environment simulation with output>
string in = <generate SGEL from environment state>;
a->SendSVSInput(in.c_str());

}

int main() {
<initialize agent and environment>
a->RegisterForRunEvent(smIEVENT _AFTER_OUTPUT_PHASE,
&output_handler, env, true);
<run>

Filters

e Basic unit of computation
 Multiple list inputs, single list output
e Different ways to combine inputs:

— Full product. Ex: N of param A, M of param B ->N * M
results

— Tuples. Ex. N of param A, N of param B -> N results

valuel resultl

value2 result2

—————— > Filter result3
result4

valuel
value2

Scene Graph

—————— > Filter

Extract Command

on-top Filter

—> all-nodes Filter

Scene Graph

top

—> node Filter

(S2 “*command.extract E1)
(E1 “ype on-top
Mop T1
Abottom B1)
(T1 *ype all-nodes)
(B1 “ype node “name block1l)

>

bottom

Extract
Command

Extract Command

Extract
Command

blockl }. | on-top Filter
block2 e
< > all-nodes Filter “top-.
g
G T >
v R False
S block1 =2IIIIILC B
§ “““ . True
—> node Filter bottom

(S2 “*command.extract E1)
(E1 “ype on-top
Mop T1
bottom Bl
status success
result R1)
(T1 “ype all-nodes)
(B1 “type node “name block1l)

(R1 "positive P1
“negative N1)

(P1 Matom Al)

(Al "a blockl b block?2)

(N1 ~atom A2)

(A2 "a blockl1 b block1)

Special Case: Intersection Filter

e SVS objects are arbitrary convex polyhedrons,
intersection calculations are expensive

 Handle with collision detector from Bullet Physics
engine

— Uses cheap broad-phase calculation to rule out
collisions

— Precompiled libs are distributed with SVS
e Caveat: All objects in scene are inserted into

collision detector. If you calculate one
intersection, you’ve calculated them all

Writing Your Own Filter

e Inherit the map _filter<result type> class

— Just need to code logic for calculating one result
from one set of input parameters

— Result caching and input combinations all taken
care of for you

Visualization

e Separate 3D viewer
program to minimize
SVS dependencies

— OpenSceneGraph, GLUT,
quickhull

e SVS talks to viewer via
file socket /tmp/viewer

* Plain-text language very
similar to SGEL

— Not specific to SVS

12

How to Get It

Clone this git repo into Core/SVS
— https://github.com/jzxu/SVS.git

Patch the kernel to use SVS:
$ patch -p0 < Core/SVS/patch

Compile and run Soar like normal

To run viewer:

Install OpenSceneGraph, GLUT, and quickhull (all
available in most Linux package repos)

$ cd Core/SVS/vis/viewer
$ scons
$./viewer

13

https://github.com/jzxu/SVS.git

Evaluation

Coal Nuggets
e Only works on *nixand Mac ¢ Works out of the box on
0OS Linux

— Uses OS-specific BSD sockets, e Syccessfully used in Bolt
and | haven’t written project

Windows version

	How to Use SVS
	History
	Overview
	Scene Graph
	Scene Graph Editing Language
	Recommended Paradigm
	Filters
	Extract Command
	Extract Command
	Special Case: Intersection Filter
	Writing Your Own Filter
	Visualization
	How to Get It
	Evaluation

