

Soar Robot Unleashed

Keegan R. Kinkade

21 February 2012

Soar Robot Environment

- Soar Robot Project
 - Differentially driven robot utilizing LIDAR (LIght Detection And Ranging)
 - Encoders estimate robot's trajectory
- What additional machinery is required to place agent in world?

Input Link

Area Description	About the Robot	LIDAR	Objects
^id	^self	^lidar	^object
^type	^name	^range	^id
^gateway	^area	^id	^visible
10	^headlight	^distance	\wedge_X
Adjrection	^battery	^rel-bearing	^y
$^{to}(2x)$	^pose		^distance
^door	X		^
^id	^x-velocity		
^state	^y		
^wall	^y-velocity		
^direction	^yaw		
^to	^yaw-velocity		
^x, ^v, ^distance	SLAM		
^light			
Topological			
Mapping			

3

Simultaneous Localization & Mapping

Simultaneous Localization and Mapping

- * While robot is exploring unknown environment:
 - GIVEN: Robot's movement commands and observations of unknown environment
 - * **ESTIMATE:** Map of features and robot's path through environment
- Probabilistically motivated problem:
 - Errors within robot's movement and observations

 $p(s, f \mid u, z, d)$

Pose / Feature Graphs

- Poses and Features represented as 'Nodes'
- Connected by 'Edges' composed of Rigid Body Transformations
- Additional observations create an overdetermined system
- Feature p in Global Frame:

$$p' = Ap$$
$$= ABp$$

Non-Linear SLAM

- * Edge \longrightarrow Observation: $z_i = f_i(x)$
- * Observation Residual: $r_i = z_i f_i(x)$
- * Scale Residual by Observation Confidence: $\chi_i^2 = (z_i - f_i(x))^T \Sigma_i^{-1} (z_i - f_i(x))$
- Typical Observations != Linear
- Stack linearized observations using Jacobian:

$$\chi^2 \approx (Jd-r)^T \Sigma^{-1} (Jd-r)$$
 , where

- * *r* is the observation residual
- * d is the linearization residual $(x x_0)$
- * Differentiate χ^2 with respect to d, solve for d which minimizes the χ^2 error

Square root SAM

Naive Solution:

$$d = (J^T \Sigma_z^{-1} J)^{-1} J^T \Sigma_z^{-1} r$$

- Typically impractical due to matrix inversion complexity ~ O(N³)
 - Other SLAM methods attempt to approximate this
- Solution: Exploit sparsity within the information matrix
 - Reorder nodes to induce additional sparsity
 - Back solve using Cholesky decomposition

F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research, 25(12):1181–1203, December 2006

Loop Closure

- Using LIDAR to close the loop:
 - Determine if robot is in the location of a previous pose
 - Attempt to create RBT between two poses using their corresponding LIDAR scans
 - Resolution Scan Matching algorithm to align points of individual scans

Topological Mapping

Topological Mapping

- While robot is exploring unknown environment:
 - GIVEN: SLAM output: Current estimate of robot poses and corresponding LIDAR scans.
 - * **ESTIMATE:** Map of rooms and how those rooms are connected.

Topological Features: Doors

- * For each new pose added:
 - Find 'Drop-Off' Points
 - Test 'Drop-Off' Points
 - * Gap
 - Distance
 - Line Fit
 - Line of Sight
 - * Set Door Direction \perp Line Fit
 - Set Location WRT Wall Thickness

Door Finder Example

Data Association

- * How do we determine if robot finds old / new door?
- * Double Gated Nearest-Neighbor Search
- Greedy: O(mn)
- Issues?

Associate		New		
Landmark	Ambiguous	Landmark		
		Heuristic		

Data Association Heuristic

Room Connections

- * Which doors connect what rooms?
 - 3-Unique Possibilities
 - 1.) Enter New Room 2.) Enter Old Room

3.) Enter Old Room Without Knowledge

Full System Demo

Input Link

Area Description	About the Robot	LIDAR	Objects
^id	^self	^lidar	^object
^type	^name	^range	^id
^gateway	^area	^id	^visible
^id	^headlight	^distance	$\wedge_{\mathbf{X}}$
Adjunction	^battery	^rel-bearing	\wedge_{V}
$^{\text{to}}(2x)$	^pose		^distance
^door	^ _X		^
^id	^x-velocity		Simulated
^state	^y		Jinulateu
	^y-velocity		
	^yaw		
^y	^yaw-velocity		

^light

Future Work

- Additional Feature Extraction
- Cooperation:
 - Loop Closing
 - Topological Mapping

Soar Robot Unleashed

Keegan R. Kinkade

21 February 2012