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Agent

Setting: Continuous Environment
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Input to the agent is a set of
objects with continuous
properties

— Position, rotation, scaling, ...

Output is fixed-length vector
of continuous numbers

Agent runs in lock-step with
environment

Fully observable



Levels of Problem Solving
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Continuous Model Learning

Learn a function
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X: current continuous
state vector

u: current output vector
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y: state vector in next ‘ ‘ .
time step X U y




Locally Weighted Regression




Problems with LWR

Query
* Euclidean distance q
doesn’t capture relational
similarity
Neighbor Neighbor

* Averages over neighbors
exhibiting different types ENE allE!
of interactions
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Problems with LWR

Query

* Euclidean distance
doesn’t capture relational -

similarity
* Averages over neighbors Neighbor /\ Neighbor

exhibiting different types N
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Modal Models

* Object behavior can be categorized into different Modes
— Behavior within a single mode is usually simple and smooth (inertia, gravity, etc...)
— Behaviors across modes can be discontinuous and complex (collisions, drops)
— Modes can often be distinguished by discrete spatial relationships between objects
* Learn two-level models composed of:
— A classifier that determines the active mode using spatial relationships
— A set of linear functions (initial hypothesis), one for each model
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Unsupervised Learning of

Environment

Mode 1

Continuous Features

Training Data
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Expectation Maximization

* Expectation

Assuming your current model parameters are

correct, what is the likelihood that the model m
generated data point i?

e Maximization

Assuming each data point was generated by the
most probable model, modify each model’s

parameters to maximize likelihood of generating
data

* |terate until convergence to local maximum
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Learning Classifier

Scene

Spatial Relations
Training Data Expectation Maximization
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Learning Classifier

Classifier Training Data

attributes class touch(A, B)

=

1000101011011
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Use linear model for
items in same model



Prediction Accuracy Experiment

e 2 Block Environment

— Agent has two outputs (dx, dy) which control the x and y
offsets of the controlled block at every times tep

— The pushed block can’t be moved except by pushing it with
the controlled block

— Blocks are always axis-aligned, there’s no momentum
* Training
— Instantiate Soar agent in a variety of spatial configurations
— Run 10 time steps, each step is a training example
* Testing
— Instantiate Soar agent in some configuration
— Check accuracy of prediction for next time step



Prediction Accuracy — Pushed Block
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Classification Performance
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Prediction Performance Without
Classification Errors
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Levels of Problem Solving

Characteristics
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Symbolic Abstraction

Lump continuous states sharing symbolic properties into a
single symbolic state
Should be Predictable

— Planning requires accurate model (ex. STRIPS operators)

— Tends to require more states, more symbolic properties

Should be General

— Fast planning and transferrable solutions
— Tends to require fewer states, fewer symbolic properties

S1: intersect(C1, C2)
S2: ~intersect(C1, C2)
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Symbolic Abstraction

* Hypothesis: contiguous regions of continuous
space that share a single behavioral mode is a
good abstract state

— Planning within modes is simple because of linear
behavior

— Combinatorial search occurs at symbolic level

e Spatial predicates used in continuous model
decision tree are a reasonable approximation



Abstraction Experiment

3 blocks, goal is to push c2 to t
Demonstrate a solution trace to agent

Agent stores sequence of abstract states in solution in
epmem

Agent tries to follow plan in analogous task

Abstraction should include predicates about c1, c2, t, avoid
predicates about d1, d2, d3
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Number of Tasks Solved
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Conclusions

* For continuous environments with interacting
objects, modal models are more general and
accurate than uniform model

* The relationships that distinguish between
modes serve as useful symbolic abstraction

over continuous state

* All this work takes Soar toward being able to
autonomously learn and improve behavior in
continuous environments



Evaluation

Coal

e Scaling issues: linear

regression is exponential in
number of objects

Linear modes is insufficient
for more complex physics
such as bouncing ->
catastrophic failure

Nuggets

Modal model learning is
more accurate and general
than uniform models

Abstraction learning results
are promising, but
preliminary



