Learning New Verbs with Retrospective Projection

Shiwali Mohan and John E. Laird

Computer Science and Engineering University of Michigan

June 21, 2012

Outline

1 Introduction

2 What to learn?

3 How to learn?

Introduction

- Focus on
 - Action verbs: *move*
 - Perceptible goal: in(object12, pantry)
 - Composition of known primitives: pick-up(object12), put-down(object12, pantry)

Introduction

- Focus on
 - Action verbs: *move*
 - Perceptible goal: in(object12, pantry)
 - Composition of known primitives: pick-up(object12), put-down(object12, pantry)
- Goal
 - Agent be able to *map* the novel verb word to an action
 - Agent be able to instantiate an action with the required objects
 - Agent be able to execute the required action

Introduction

- Focus on
 - Action verbs: *move*
 - Perceptible goal: in(object12, pantry)
 - Composition of known primitives: pick-up(object12), put-down(object12, pantry)
- Goal
 - Agent be able to *map* the novel verb word to an action
 - Agent be able to instantiate an action with the required objects
 - Agent be able to execute the required action
- Learning Mechanism
 - Interactive instruction
 - Retrospective projection
 - episodic memory of performing the task in an instructed trial
 - $\bullet\,$ generalize from that specific, $situated\,$ experience

 $3~{\rm kinds}$ of knowledge

3 kinds of knowledge

- Linguistic Knowledge
 - the verb word: *move*
 - the argument structure: move the red block to the pantry
 - extracted from the action command by the linguistic system
 - semantic memory

3 kinds of knowledge

- Linguistic Knowledge
 - the verb word: move
 - the argument structure: move the red block to the pantry
 - extracted from the action command by the linguistic system
 - semantic memory
- Procedural Knowledge
 - selection knowledge for breaking ties between known primitives
 - acquired through situated experience of performing the task (encoded in episodic memory)
 - procedural memory

3 kinds of knowledge

- Linguistic Knowledge
 - the verb word: move
 - the argument structure: move the red block to the pantry
 - extracted from the action command by the linguistic system
 - semantic memory
- Procedural Knowledge
 - selection knowledge for breaking ties between known primitives
 - acquired through situated experience of performing the task (encoded in episodic memory)
 - procedural memory
- Semantic Knowledge
 - goal predicates: in{pantry, the red block}
 - explicit, declarative description from the instructor: "The goal is the red block is in the pantry".
 - semantic memory

Acquire Semantic knowledge

Acquire Semantic knowledge

Acquire Semantic knowledge

[Failure: Behavior Execution Phase]

[Failure: Behavior Execution Phase]

Stage I: Retrospective Recall

• De-couple from the current state

[Failure: Behavior Execution Phase]

- De-couple from the current state
- Recreate the 'beginning' state: explanation

[Failure: Behavior Execution Phase]

- De-couple from the current state
- Recreate the 'beginning' state: explanation
- Assign the desired state

[Failure: Behavior Execution Phase]

- De-couple from the current state
- Recreate the 'beginning' state: explanation
- Assign the desired state
- Propose the operator to be learned in explanation

Acquire Procedural Knowledge [Failure: Behavior Execution Phase]

Stage II: Forward Projection

• Selection Space using Situated Experience

[Failure: Behavior Execution Phase]

Stage II: Forward Projection

• Selection Space using Situated Experience

Acquired Knowledge

• New Verb-Operator Mapping

Acquired Knowledge

• New Verb-Operator Mapping

• Selection Chunks

```
chunk-1
```

```
<s1> `name op_1 `argument1 <o1> `argument2 <11> `object <o1>
`object <o2> <o2> `category location
```

```
<s1> ^operator <op2> <op2> ^name pick-up ^argument1 <o1> -->
```

```
<s1> ^operator <op2> >
```

chunk-2

```
<s1> `name op_1 `argument1 <o1> `argument2 <l1> `object <o1>
    `grabbed <o1> `object <o2> <o2> `category location
<s1> `operator <op2> <op2> `name put-down `argument1 <o1>
    `argument2 <l1>
-->
<s1> `operator <op2> >
```

Future Work

- Construct a taxonomy of verbs/actions based on
 - argument sturcture; intransitive, transitive, di-transitive
 - goal semantics
 - interactions required
- Currently, declarative goal specification is required
 - can this be acquired through multiple executions of the task?
- Learn proposal knowledge
 - associate with object affordances

Nuggets and Coal

- Nuggets
 - Learning is embedded within an interaction, language understanding framework
 - Impasse driven
 - agent acquires 'useful' knowledge about the task
 - Multiple kinds of knowledge is acquired
 - knowledge of a 'verb' is distributed across modalities
- Coal
 - Incomplete
 - proposal knowledge
 - selection knowledge between composite verbs
 - Evaluation
 - Quantitative measure of generality of learning