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Figure 2: Phrase structure tree for the sentence ‘The president meets the board on Friday’ (a), transformed into right-corner
form (b), then mapped (in dark gray) onto a random variables in a factored sequence model (c) with three hidden levels. Circles
denote random variables (over incomplete constituents qd

t and complete constituents f d
t at each nesting depth d and time step t),

and edges denote conditional dependencies. Shaded circles denote variables with observed values (words in this case).

Background

Schuler et al. (2010) calculate a first approximation of
the working memory capacity required to parse the large
syntactically-annotated Penn Treebank Wall Street Journal
and Switchboard corpora, based on what was intended to be a
strict requirement that only completely contiguous syntactic
structures could occupy a single working memory element. In
particular, each syntactically contiguous chunk is constrained
to the form of an incomplete constituent state A/B, consisting
of a single active but unfinished constituent A lacking a sin-
gle awaited constituent B yet to be attached, somewhere in the
right progeny of the active constituent. Syntactic relations be-
tween these incomplete constituent chunks are underspecified
as non-immediate dominance relations between the awaited
and active components of successive incomplete constituents
(see Figure 1). This can be thought of as a highly-constrained
version of the non-immediate dominance relations in Tree
Adjoining Grammar (Joshi, 1985) or Description Tree Gram-
mar (Rambow, Weir, & Vijay-Shanker, 1995) in processing
models proposed by Stabler (1994) and Mazzei, Lombardo,
and Sturt (2007), except that here, all syntactic information
other than the categories of active and awaited constituents at
the frontier of an incomplete constituent is discarded.

This austere definition still allows the complete specifi-
cation of phrase structure trees from stores of incomplete
constituents arranged in time order (see Figure 2). This
correspondence can be defined through a reversible right-
corner transform (Schuler et al., 2010), a variant of the
left-corner transform of Johnson (1998), associating phrase

structure trees (Figure 2a) with memory-minimizing trans-
formed representations (Figure 2b). This is done by asso-
ciating every top-down sequence of right children between
some left child1 and its rightmost leaf (say, from the root
S to the NP ‘Friday’ in Figure 2a) with a bottom-up se-
quence of incomplete constituents, each having the original
left child as its active component and one of the original right
children as its awaited component (producing the sequence
S/VP, S/PP, S/NP in Figure 2b). This representation converts
right-expanding sequences of complete constituents into left-
expanding sequences of incomplete constituents, leaving only
center-expanding sequences (alternating expansions of left
and right children) to require additional memory resources
in a bottom-up time-order traversal.

This memory-minimizing representation can then be
mapped to random variables in a sequence model (Figure 2c),
with incomplete constituents mapped to store state vari-
ables qd

t and complete constituents mapped to final state vari-
ables f d

t . Connections among these variables define proba-
bilities for partial utterances, in which values are hypothe-
sized for each random variable with probability conditioned
on only its adjacent antecedent variables (those connected by
outgoing arcs).2 Each time step in the model (correspond-
ing to columns in Figure 2c) defines a set of incomplete con-
stituents recognised thus far. For example, the store q1.D

t at

1For the purpose of this definition, the root of a tree is considered
to be a left child (e.g. of a right-branching supra-sentential discourse
structure).

2The probability of a partial utterance at any time step t, subsum-
ing a store state q1..D

t , and the set of observed words x1..t to that time
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shift(W ) glc(LHS ! TriggerRest)
shiftcomplete glccomplete(LHS ! TriggerRest)

PUSH THE 
NEXT WORD W 
ON THE STACK

PROJECT A RULE AND MATCH THE 
SOUGHT PARENT EXPECTATION

PROJECT A RULE WITHOUT 
MATCHING (FIND A TREE)

SCAN THE WORD 
CURRENTLY SOUGHT 
ON TOP OF THE STACK



1: procedure GLC(Grammar,Goals,InputString)
2: choose one of the viable GLCOptions
3: if glc (LHS ! TriggerRest) then . predict without attaching
4: GLC with Trigger replaced by Rest on Goals
5: else if glcomplete (LHS ! TriggerRest) then . predict and attach
6: GLC with Trigger and matching LHS replaced by Rest on Goals
7: else if shift (W ) then
8: GLC with W pushed on Goals, popped from InputString
9: else if shiftcomplete then

10: GLC with matching W popped on Goals and popped from InputString
11: end if
12: end procedure

Figure 2: Pseudocode for Generalized Left Corner Parser

The proposal is to use algorithms like the one in figure 2 to systematically explore automata
that use GLC parsing strategies between the bottom-up extreme associated with LR parsing and
the top-down extreme alternative. Towards this overarching goal, the objectives of this subproject
are given below in subsection 2.3.1.

2.3.1 Objectives

Formally characterize intermediate parser states The proposed work systematically varies the
content of intermediate parser states in search of diverging predictions about human sentence com-
prehension di�culty. One objective is to work out the consequences of coarser or finer linguistic
expectations about upcoming categories. For example, more articulated subcategorization frames
make for more specific intermediate parser states. A second, separate objective concerns the eager-
ness with which grammatical expectations are created. The strategy for achieving this objective is
highlighted in two preliminary results. As part of one preliminary result, Hale and Gibson (2004)
found a reading time slowdown at the matrix verb angered in stimuli like 2a, as compared to control
examples such as 2b.

(2) a. [SBAR That the lawyer was misleading the jurors ] angered the judge.
b. [NP The evidence that the lawyer was misleading the jurors ] angered the judge.

An account of this contrast based on the Surprisal linking hypothesis would attribute the di�culty
at angered to the rarity of the sentential subject phrase structure rule S!SBAR VP, compared
to the ubiquitous S!NP VP. But this explanation can only go through if the rule is used at the
relevant time. On a top-down parsing strategy, the explanation does not go through; the rule is
proposed far too early. On a left-corner strategy, by contrast, the penalty for the rare rule would be
assessed just at the point when human readers seem to read more slowly. The interpretation is that
the intermediate parser states involved in reading 2a do not involve the sort of expectations that a
rule projected at the beginning of the sentence would set up. The second preliminary result has to
do with states that lead to failed analyses. Hale (2007) o↵ers an account of local coherences (Tabor,
Galantuccia, and Richardson, 2004) in terms of intermediate parser states whose expectations vary
in relative utility as regards garden path avoidance (cf. Chater, Crocker, and Pickering (1998)).
The planned work takes up these issues, along with the number k of parallel analyses that might
be contained in a particular intermediate parser state. The PI will examine this question using
beam search following Roark and Johnson (1999) and Lombardo and Sturt (2002).

Examine alternative memory architectures Phrase structure parsers that pass through
heavily-loaded stack configurations present the same opportunities as dependency parsers for alter-
native memory architectures. As section 1.2.3 previously indicated, two established augmentations,
(1) a stack cuto↵ (Pulman, 1986) and (2) an activation-based associative memory (Lewis, 1993) will
be examined. By changing the sign of a constant in the ACT-R activation equation, the PI will de-
termine whether or not digging-in e↵ects (Tabor and Hutchins, 2004) can be derived by alternative
theories exemplifying a range of GLC parsing strategies and specific grammatical analyses.
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Figure 2: Phrase structure tree for the sentence ‘The president meets the board on Friday’ (a), transformed into right-corner
form (b), then mapped (in dark gray) onto a random variables in a factored sequence model (c) with three hidden levels. Circles
denote random variables (over incomplete constituents qd

t and complete constituents f d
t at each nesting depth d and time step t),

and edges denote conditional dependencies. Shaded circles denote variables with observed values (words in this case).

Background

Schuler et al. (2010) calculate a first approximation of
the working memory capacity required to parse the large
syntactically-annotated Penn Treebank Wall Street Journal
and Switchboard corpora, based on what was intended to be a
strict requirement that only completely contiguous syntactic
structures could occupy a single working memory element. In
particular, each syntactically contiguous chunk is constrained
to the form of an incomplete constituent state A/B, consisting
of a single active but unfinished constituent A lacking a sin-
gle awaited constituent B yet to be attached, somewhere in the
right progeny of the active constituent. Syntactic relations be-
tween these incomplete constituent chunks are underspecified
as non-immediate dominance relations between the awaited
and active components of successive incomplete constituents
(see Figure 1). This can be thought of as a highly-constrained
version of the non-immediate dominance relations in Tree
Adjoining Grammar (Joshi, 1985) or Description Tree Gram-
mar (Rambow, Weir, & Vijay-Shanker, 1995) in processing
models proposed by Stabler (1994) and Mazzei, Lombardo,
and Sturt (2007), except that here, all syntactic information
other than the categories of active and awaited constituents at
the frontier of an incomplete constituent is discarded.

This austere definition still allows the complete specifi-
cation of phrase structure trees from stores of incomplete
constituents arranged in time order (see Figure 2). This
correspondence can be defined through a reversible right-
corner transform (Schuler et al., 2010), a variant of the
left-corner transform of Johnson (1998), associating phrase

structure trees (Figure 2a) with memory-minimizing trans-
formed representations (Figure 2b). This is done by asso-
ciating every top-down sequence of right children between
some left child1 and its rightmost leaf (say, from the root
S to the NP ‘Friday’ in Figure 2a) with a bottom-up se-
quence of incomplete constituents, each having the original
left child as its active component and one of the original right
children as its awaited component (producing the sequence
S/VP, S/PP, S/NP in Figure 2b). This representation converts
right-expanding sequences of complete constituents into left-
expanding sequences of incomplete constituents, leaving only
center-expanding sequences (alternating expansions of left
and right children) to require additional memory resources
in a bottom-up time-order traversal.

This memory-minimizing representation can then be
mapped to random variables in a sequence model (Figure 2c),
with incomplete constituents mapped to store state vari-
ables qd

t and complete constituents mapped to final state vari-
ables f d

t . Connections among these variables define proba-
bilities for partial utterances, in which values are hypothe-
sized for each random variable with probability conditioned
on only its adjacent antecedent variables (those connected by
outgoing arcs).2 Each time step in the model (correspond-
ing to columns in Figure 2c) defines a set of incomplete con-
stituents recognised thus far. For example, the store q1.D

t at

1For the purpose of this definition, the root of a tree is considered
to be a left child (e.g. of a right-branching supra-sentential discourse
structure).

2The probability of a partial utterance at any time step t, subsum-
ing a store state q1..D

t , and the set of observed words x1..t to that time
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Figure 2: Phrase structure tree for the sentence ‘The president meets the board on Friday’ (a), transformed into right-corner
form (b), then mapped (in dark gray) onto a random variables in a factored sequence model (c) with three hidden levels. Circles
denote random variables (over incomplete constituents qd

t and complete constituents f d
t at each nesting depth d and time step t),

and edges denote conditional dependencies. Shaded circles denote variables with observed values (words in this case).

Background

Schuler et al. (2010) calculate a first approximation of
the working memory capacity required to parse the large
syntactically-annotated Penn Treebank Wall Street Journal
and Switchboard corpora, based on what was intended to be a
strict requirement that only completely contiguous syntactic
structures could occupy a single working memory element. In
particular, each syntactically contiguous chunk is constrained
to the form of an incomplete constituent state A/B, consisting
of a single active but unfinished constituent A lacking a sin-
gle awaited constituent B yet to be attached, somewhere in the
right progeny of the active constituent. Syntactic relations be-
tween these incomplete constituent chunks are underspecified
as non-immediate dominance relations between the awaited
and active components of successive incomplete constituents
(see Figure 1). This can be thought of as a highly-constrained
version of the non-immediate dominance relations in Tree
Adjoining Grammar (Joshi, 1985) or Description Tree Gram-
mar (Rambow, Weir, & Vijay-Shanker, 1995) in processing
models proposed by Stabler (1994) and Mazzei, Lombardo,
and Sturt (2007), except that here, all syntactic information
other than the categories of active and awaited constituents at
the frontier of an incomplete constituent is discarded.

This austere definition still allows the complete specifi-
cation of phrase structure trees from stores of incomplete
constituents arranged in time order (see Figure 2). This
correspondence can be defined through a reversible right-
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structure trees (Figure 2a) with memory-minimizing trans-
formed representations (Figure 2b). This is done by asso-
ciating every top-down sequence of right children between
some left child1 and its rightmost leaf (say, from the root
S to the NP ‘Friday’ in Figure 2a) with a bottom-up se-
quence of incomplete constituents, each having the original
left child as its active component and one of the original right
children as its awaited component (producing the sequence
S/VP, S/PP, S/NP in Figure 2b). This representation converts
right-expanding sequences of complete constituents into left-
expanding sequences of incomplete constituents, leaving only
center-expanding sequences (alternating expansions of left
and right children) to require additional memory resources
in a bottom-up time-order traversal.

This memory-minimizing representation can then be
mapped to random variables in a sequence model (Figure 2c),
with incomplete constituents mapped to store state vari-
ables qd

t and complete constituents mapped to final state vari-
ables f d

t . Connections among these variables define proba-
bilities for partial utterances, in which values are hypothe-
sized for each random variable with probability conditioned
on only its adjacent antecedent variables (those connected by
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ing to columns in Figure 2c) defines a set of incomplete con-
stituents recognised thus far. For example, the store q1.D
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to be a left child (e.g. of a right-branching supra-sentential discourse
structure).

2The probability of a partial utterance at any time step t, subsum-
ing a store state q1..D

t , and the set of observed words x1..t to that time



Expectations

*
2

6664

IP

NP

john

I

0

I VP

;

V

0

Vintrans

slept

;

P

on

3

7775
, [the ; floor]

+



NP/Z garden path

(1) a. while Mary was mending a sock fell on the floor

b. while Mary was mending , a sock fell on the floor



different syntactic contexts in states 18 and 25, respectively. Progress along the globally
correct path, which is committed to the intransitive rule VP fi VBG, is rated as more
expensive by the experience-based heuristic than returning to the transitive analysis in state
14. Because of this asymmetry in heuristic values, A* returns to state 14 and does extra
work in 1a but not 1b. On the basis of the information provided by the experience-based
heuristic, it is rational to explore the garden path in 1a but not in 1b. The branches in
subfigure 8(b) reflect subcategorization possibilities common to both items.

The simple model examines 43 search nodes during the analysis of the temporarily
ambiguous item 1a. However, it dispatches the unambiguous item 1b after only 38 nodes,
despite that sentence having an additional token, the comma. This derives the asymmetry
observed by Frazier and colleagues. Although Frazier (1979) accounts for the effect with
the Minimal Attachment (MA) heuristic, the present model recasts it as a side effect of opti-
mistic expectations about the way sentences typically end. Rerunning the same simulation
with all step-costs set identically to zero demonstrates that this particular prediction is not
due to g(n) implementing MA.6 Of course, retaining the general formulation with g(n) antic-
ipates increasingly detailed models that incorporate richer notions of analysis quality.

Fig. 7. Grammar for garden pathing in Example 1.
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VP S 55790 44.936 0.1572

S 53991 10.542 0.0986

NP S 43635 33.092 0.1633

NP 38844 55.791 0.2126

NP S S 34415 47.132 0.2122

S S 33578 52.800 0.2195

PP S 30693 34.454 0.1915

IN PP S 27272 32.379 0.2031

DT NP S 22375 34.478 0.2306

AUX VP S 16447 46.536 0.2863

VBD VP S 16224 43.057 0.2826

VB VP S 13548 40.404 0.3074

the NP S 12507 34.120 0.3046

NP NP S 12092 43.821 0.3269

DT 10440 66.452 0.3907
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Fig. 5. Different parsing strategies using PDTs.

applied to their components (for RTNs and PDAs) or their entirety (for FSAs).
These steps could improve the time and space requirements of the recognition
example.

In a real-world example, this approach essentially is used to identify voice
action queries in the Google Android speech platform. For example, a production
could be S → send a message from X to Y where the non-terminals X and Y ,
for the sender and recipient, are rewritten as people’s names. A match identifies
a voice query as a messaging action.

5.2 Parsing

In the final example in the last section, we might not only wish to identify
a messaging action in a voice query but also want to parse the input to find
where the sender and recipient names are located. This is very similar to CFG
recognition but with the output augmented with the parse bracketing. A classical
approach is to augment the output tape of the PDT to include an index for each
production [1]. We take another approach here: the parentheses are chosen to
identify the production (or non-terminal) and the parentheses are retained in
the shortest path output. With the command line operations, this is done with
the flag --keep parentheses. This does not increase the time or space complexity
over recognition.

It has long been known that PDTs can be used to parse and that different
parsing strategies can be achieved by compiling the CFG into different PDTs [1,
13]. For example, the CFG: S → AB, S → CB, C → AS, A → a and B → bcan
be left parsed (‘top-down’) by the PDT in Figure 5a, right parsed (‘bottom-up’)
by the PDT in Figure 5b, and left-corner parsed by the PDT in Figure 5c

idea: a ^waypoint has an^input queue and ^stack
     PDT transitions as operators
         tune numeric prefs with RL
         chunk operator sequences 
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Abstract

This article examines cognitive process models of human sentence comprehension based on the
idea of informed search. These models are rational in the sense that they strive to find a good syntac-
tic analysis quickly. Informed search derives a new account of garden pathing that handles traditional
counterexamples. It supports a symbolic explanation for local coherence as well as an algorithmic
account of entropy reduction. The models are expressed in a broad framework for theories of human
sentence comprehension.

Keywords: Comprehension; Entropy reduction; Heuristic; Rationality; Sentence processing; Syntax

1. Introduction

As in other areas of cognitive science, the study of human sentence comprehension natu-
rally proceeds at multiple levels. Marr (1982) draws a distinction between scientific ques-
tions posed at the computational level and questions at the algorithmic level. At his highest
level, the computational level, one asks: What task does a sentence understander carry out?
What sort of mental representations are constructed, as the outputs of sentence comprehen-
sion? What features of the comprehended language are brought to bear, as inputs to the
comprehension task? Is this input-output mapping ‘‘easy’’ or ‘‘hard’’ when considered as a
formal problem on its own? Marr’s distinction separates these concerns from others that per-
tain to the algorithmic level. At this lower level, one asks: What procedure accomplishes the
calculation of the function defined at the computational level? What is the time course of
this calculation, and what is its resource utilization in terms of abstract resources like
storage? This separation into independent levels of analysis constitutes one of the most dis-
tinctive methodological features of cognitive science.
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