Rational Parsing

Cornell University Linguistics Department

Phrase structure

4 operators

PUSH THE NEXT WORD W ON THE STACK

PROJECT A RULE WITHOUT MATCHING (FIND A TREE)

$\begin{array}{c|c} \texttt{shift}(W) & \texttt{glc}(LHS \to TriggerRest) \\ \hline \texttt{shiftcomplete} & \texttt{glccomplete}(LHS \to TriggerRest) \\ \end{array}$

SCAN THE WORD CURRENTLY SOUGHT ON TOP OF THE STACK **PROJECT A RULE AND MATCH THE SOUGHT PARENT EXPECTATION**

Stack machine

1: procedure GLC(Grammar, Goals, InputString)

- 2: choose one of the viable GLCOptions
- 3: **if** $glc(LHS \rightarrow TriggerRest)$ **then**
- 4: GLC with *Trigger* replaced by *Rest* on Goals
- 5: else if glcomplete $(LHS \rightarrow TriggerRest)$ then

 \triangleright PREDICT and attach

▷ PREDICT without attaching

- 6: GLC with Trigger and matching LHS replaced by Rest on Goals
- 7: else if shift(W) then
- 8: GLC with W pushed on Goals, popped from InputString
- 9: else if shiftcomplete then
- 10: GLC with matching W popped on Goals and popped from InputString
- 11: **end if**
- $12: \mathbf{ end procedure}$

Left Corner

Shift The [S] The Glc DT -> The>< [S] DT GIC NP -> DT><NN [S] NP [NN] Shift president [S] NP [NN] president GlcComplete NN -> president>< [S] NP GlcComplete S -> NP></P [VP] Shift meets [VP] meets Glc VB -> meets>< [VP] VB GIC VP -> VB><NP [VP] VP [NP] Shift the [VP] VP [NP] the Glc DT -> the>< [VP] VP [NP] DT GlcComplete NP -> DT><NN [VP] VP [NN] Shift board [VP] VP [NN] board GlcComplete NN -> board>< [VP] VP GlcComplete VP -> VP><PP [PP] Shift on [PP] on Glc IN -> on>< [PP] IN GlcComplete PP -> IN><NP [NP] Shift Friday [NP] Friday GlcComplete NP -> Friday><

Expectations

NP/Z garden path

(1) a. while Mary was mending a sock fell on the floorb. while Mary was mending , a sock fell on the floor

Phrase-structure grammar

S	\rightarrow	NP	VP
\mathbf{S}	\rightarrow	SBAR	\mathbf{S}
S	\rightarrow	SBAR	,
SBAR	\rightarrow	IN	\mathbf{S}
VP	\rightarrow	VBG	
VP	\rightarrow	VBG	NP
VP	\rightarrow	VBD	PP
VP	\rightarrow	AUX	VP
VBG	\rightarrow	mending	
VBD	\rightarrow	fell	
VBD	\rightarrow	was	
PP	\rightarrow	IN	NP
NP	\rightarrow	NNP	
NP	\rightarrow	DT	NN
NNP	\rightarrow	Mary	
NN	\rightarrow	sock	
NN	\rightarrow	floor	
IN	\rightarrow	while	
IN	\rightarrow	on	
DT	\rightarrow	the	
DT	\rightarrow	a	

S

Visitation sequence

----- garden path ---- globally-correct

Informed search: A*

KNOWN COST TO GET HERE FROM START

$f(n) = g(n) + \hat{h}(n)$

ESTIMATED VALUE OF A SEARCH NODE A GUESS ABOUT HOW MUCH IT'LL COST TO FINISH FROM HERE

Brown	stack		average $\#$	
cornue	contents	attestations	steps to goal	standard error
corpus	VP S	55790	44.936	0.1572
$\hat{h}(n)$	S	53991	10.542	0.0986
	NP S	43635	33.092	0.1633
	NP	38844	55.791	0.2126
	NP S S	34415	47.132	0.2122
	S S	33578	52.800	0.2195
	PP S	30693	34.454	0.1915
	IN PP S	27272	32.379	0.2031
	DT NP S	22375	34.478	0.2306
	AUX VP S	16447	46.536	0.2863
	VBD VP S	16224	43.057	0.2826
	VB VP S	13548	40.404	0.3074
	the NP S	12507	34.120	0.3046
	NP NP S	12092	43.821	0.3269
	DT	10440	66.452	0.3907

Soar opportunities

parsing strategies are pushdown transducers

idea: a ^waypoint has an ^input queue and ^stack PDT transitions as operators tune numeric prefs with RL chunk operator sequences

Read the paper

COGNITIVE SCIENCE A Multidisciplinary Journal

Cognitive Science 35 (2011) 399–443 Copyright © 2010 Cognitive Science Society, Inc. All rights reserved. ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/j.1551-6709.2010.01145.x

What a Rational Parser Would Do

John T. Hale

Department of Linguistics, Cornell University

Received 4 June 2009; received in revised form 30 July 2010; accepted 31 July 2010

Talk to me!

jthale@cornell.edu