Optimal Control Approaches to Language

How the Architecture "Shows Through"

Richard L. Lewis Michael Shvartsman Satinder Singh

Psychology, Computer Science
University of Michigan

Soar Workshop 32(!)
21 June 2012

The idea: Applying Newell \& Simon's scissors to language (plus utility maximization)

> All aspects of linguistic processing and behavior-from parsing strategies to production strategies to control of short and long-term memory to eye-movement control-may be understood as the solution to the constrained optimization problem posed by the external task environment, task structure, and internal processing structure/constraints (e.g. representation noise, knowledge).

Howes, Lewis \& Vera (2009, Psychological Review)

We'll pursue this via the application of state-of-the-art theoretical ideas ... from the 1940-60s: optimal control and optimal state estimation.

Overview

(1) What determines the nature of eye-movements in linguistic tasks?

- The task and model
- Predictions vs. human behavior
- How architecture shapes adaptation
(2) Conclusions and looking ahead

The List Lexical Decision Task

lead hilt robe helm guru east

Version of this task first used by Schvanaveldt \& Meyer (1973); Meyer \& Schvanavedlt (1972)

Explicit payoffs: Motivating with cash

Explicit payoffs: Motivating with cash

Explicit payoffs: Motivating with cash

	Accuracy	Balanced	Speed
Incorrect penalty	-150	-50	-25
Speed bonus (per	8	6.7	5.7
second under 5s)			

An adaptive model that performs the complete task

See Legge et al (1997); Bicknell \& Levy (2010); Ratcliff \& Mckoon (2008); Norris (2009).

"Random walk" of Bayesian posterior update

Bayesian priors and stimulus representation

Model maintains belief probabilities over:
(a) probability distribution over all possible strings in the currently fixated position;
(b) the probability of a nonword in each position; probability current trial is a word trial is 1 - sum over these.

The prior over (a) is based on Brown Corpus frequency; prior over (b) is probability of a nonword trial (0.5) divided by the \# of positions (6).

The string stimulus is represented with a simple indicator vector coding (length 26×4) (Norris, 2009). At each sample (10ms), Guassian noise of mean zero and $\mathrm{SD}=1.2$ (more on this) is added to the true representation.

Sample model behavior

CORRECT WORD Trial

Sample model behavior

INCORRECT WORD Trial

Generating predictions

- Selecting a policy (pair of thresholds) "programs" the machine to perform the task.
- Policy selected through payoff optimization-not data fitting.

	Optimal Payoff condition	Optimal Saccade Threshold
Response Threshold		

Generating predictions

- Selecting a policy (pair of thresholds) "programs" the machine to perform the task.
- Policy selected through payoff optimization-not data fitting.

	Optimal Payoff condition	Optimal Saccade Threshold
Response Threshold		
Accuracy	0.99	0.999
Balanced	0.97	0.999
Speed	0.92	0.99

I.e, $\pi_{\text {speed }}^{*}=(0.92,0.99)$ and so on. With fixed policy, machine generates dozens of behavioral measures (e.g. RTs, errors, RTs for accurate vs./ inaccurate, fixation durations for words, nonwords, frequency effects, ...)

Finding the sweet spot: Payoff as function of thresholds

$$
\pi^{*}=\arg \max _{\pi \in \Pi} \mathbb{E}_{\text {trial } \sim \text { Experiment }} U(\pi, \text { trial })
$$

Saccade Threshold

BAL payoff vs. Saccade Threshold
(MODEL, noise=1.20)

$\begin{array}{lllll}0.80 & 0.85 & 0.90 & 0.95 & 1.00\end{array}$

Saccade Threshold

SPD payoff vs. Saccade Threshold
(MODEL, noise=1.20)

Saccade Threshold

Payoff as a function of behavior

Single Fixation Duration (ms)

Payoffs vs. Trial RT
(MODEL, noise=1.20)

Trial Response Time (ms)

Payoffs vs. Frequency Effect
(MODEL, noise=1.20)

Log Frequency Effect on SFD

Model and human at level of trial

Response Time for Word Trials
(MODEL, noise=1.20)

Response Time for Nonword Trials
(MODEL, noise=1.20)

Percent Correct
(MODEL, noise=1.20)

Model and human at level of trial

Response Time for Word Trials
(MODEL, noise=1.20)

Response Time for Word Trials (HUMAN)

Response Time for Nonword Trials
(MODEL, noise=1.20)

Response Time for Nonword Trials
(HUMAN)

Percent Correct
(MODEL, noise=1.20)

Percent Correct
(HUMAN)

Model and human at level of word/string

Frequency Effect on SFD

Model and human at level of word/string

Single Fixation Duration
(HUMAN)

SFD by Frequency Class
(MODEL, noise=1.20)

SFD by Frequency Class
(HUMAN)

Frequency Effect on SFD

Frequency Effect on SFD
(HUMAN)

Accuracy Balance Speed
Accuracy Balance Speed

Model and human: Words vs. nonwords, position effects

Word SFD by correctness
(HUMAN)

Nonword SFD by correctness

Nonword SFD by correctness
(HUMAN)

Model and human: Words vs. nonwords, position effects

Word SFD by correctness

Nonword SFD by correctness
(MODEL, noise=1.20)

Model and human: Words vs. nonwords, position effects

Word SFD by correctness

Nonword SFD by correctness
(MODEL, noise=1.20)

Nonword SFD by correctness

Word SFD by Position in List
(MODEL, noise=1.20)

Model and human: Words vs. nonwords, position effects

Word SFD by correctness

Nonword SFD by correctness
(MODEL, noise=1.20)

Word SFD by Position in List

Model and human: Words vs. nonwords, position effects

Word SFD by correctness
(HUMAN)

Nonword SFD by correctness
(MODEL, noise=1.20)

Nonword SFD by correctness
(HUMAN)

Accuracy Balance Speed

Word SFD by Position in List

```
(MODEL, noise=1.20)
```


Word SFD by Position in List (HUMAN)

(1) What determines the nature of eye-movements in linguistic tasks?

- The task and model
- Predictions vs. human behavior
- How architecture shapes adaptation
(2) Conclusions and looking ahead

Does the processing architecture matter?

The theoretical claim here is that eye-movement control is jointly shaped by both task payoff and architecture. What is the evidence for this?

Through modeling we can explore adaptation to different architectures than the one hypothesized for the human oculomotor system.

The "minimal model"

The "minimal model"

Payoff structure \& predictions for the minimal model

Saccade Threshold

BAL payoff vs. Saccade Threshold
(MODEL, noise=1.90)

Saccade Threshold

SPD payoff vs. Saccade Threshold
(MODEL, noise=1.90)

Saccade Threshold

Payoff structure \& predictions for the minimal model

Model fit for the alternative architectures

Model Error vs. Noise for Architectural Variants

(1) What determines the nature of eye-movements in linguistic tasks?
(2) Conclusions and looking ahead

Summary

We applied optimal control and state estimation techniques to pursue, computationally, an interesting theoretical idea. Doing so yielded two things:

(1) What determines the nature of eye-movements in linguistic tasks? Answer: Eye-movement control is the solution to a constrained optimization problem posed by task structure and payoff, linguistic knowledge, and oculomotor processing architecture.
(2) A novel empirical demonstration: Humans adapt their oculomotor control at the level of single fixation durations to maximize payoff in linguistic tasks, and do so in ways sensitive to the specific contingencies of the task at hand.

Stronger ties between psycholinguistics and linguistics and other areas of cognitive science?

Bayesian memory \& perception reinforcement learning
decision making
rational analysis
bounded rationality
psycholinguistics:
classic parsing strategies rational approaches

syntactic theory
language evolution

Optimal control and syntactic theory and evolution??

The question we can pose is: What optimization problem (specifically, bounded optimal control problem) is human language the solution to?

- This offers a perspective on language evolution/emergence that complements existing approaches by placing emphasis on how the details of cognitive architecture and utility shape language, abstracting away from processes of evolution.
- It perhaps offers another way to pursue the "Strong Minimalist" thesis of optimality in language (recent work by Chomsky).

For more, see Bratman, Shvartsman, Lewis \& Singh (2010) on my web site.

Grammar as bounded optimal policy

Bratman, Shvartsman, Lewis \& Singh (2012)
Environment \quad Agent memory Lexicon size $(S) \quad$ Properties of emergent linguistic system
Association and systematic order, where in addition

		3	single symbols uttered in isolation denote specific box- key combinations. Can only achieve 75\% success.
Two Roomsone symbol working memory +one symbol long-term memory	4	Association and systematic symbol order. SPEAKER first describes the box, then the key (see Figure 2b).	
		8	Highly context-dependent and idiosyncratic symbol meanings. For example key 2 is represented by sym- bol 4 if uttered before box, but symbol 5 after.
Two rooms	16	Each symbol denotes a box-key combination. For ex- ample symbol 5 means key 1 and box 1.	
two symbol working memory (no long-term memory)	3	Similar to case with 3 symbols above.	

One symbol		
Onem	working memory + one symbol long-term	3

Collaborators and sponsors

Michael Shvartsman
U of Michigan Psychology

Julie Boland
U of Michigan Psychology

Satinder Singh
U of Mich Computer Sci

Andrew Howes
U of Birmingham Comp Sci

Miki Obata
Mie University Linguistics

Marc Berman U of Toronto Psych

John Jonides
U of Michigan Psychology

Language \& Cognitive Architecture Lab: Bryan Berend, Yasaman Kazerooni, Emmanuel Kumar, Craig Sanders, Mehgha Shyam

National Science Foundation

