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The idea: Applying Newell & Simon’s scissors to language
(plus utility maximization)

All aspects of linguistic processing and

behavior—from parsing strategies to

production strategies to control of short

and long-term memory to eye-movement

control—may be understood as the solution

to the constrained optimization problem

posed by the external task environment,

task structure, and internal processing

structure/constraints (e.g. representation

noise, knowledge).
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Howes, Lewis & Vera (2009,

Psychological Review)

We’ll pursue this via the application of state-of-the-art theoretical ideas

. . . from the 1940-60s: optimal control and optimal state estimation.
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Modeling eye-movements

Overview

1 What determines the nature of eye-movements in linguistic
tasks?

The task and model
Predictions vs. human behavior
How architecture shapes adaptation

2 Conclusions and looking ahead
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Modeling eye-movements Task and model

The List Lexical Decision Task
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Version of this task first used by Schvanaveldt & Meyer (1973);
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Modeling eye-movements Task and model

Explicit payoffs: Motivating with cash

4 LEWIS, SHVARTSMAN & SINGH

Accuracy Balanced Speed

Incorrect penalty -150 -50 -25
Speed bonus (per
second under 5s)

8 6.7 5.7

Table 1
Quantitative payo↵s given to both model and hu-
man participants. These payo↵ points translated
into cash bonuses for the human participants.

Three distinct payo↵s

We evaluated both model and human participants
according to three di↵erent payo↵ functions (spec-
ified in Table 1. The payo↵s were designed to im-
pose di↵erent speed-accuracy tradeo↵s for a given
level of success, and were all defined in terms of a
bonus for speed and penalty for incorrect responses.
The bonus was continuous at the millisecond level,
starting at zero points for responses longer than 5s
and rising by a di↵erent number of points per sec-
ond for each payo↵.

An optimal control model

Main theoretical assumptions

We can now briefly state our three main theoret-
ical assumptions:

1. Saccadic control is a “rise-to-threshold” sys-
tem (Brodersen et al., 2008) conditioned on task-
specific decision variables that reflect the accu-
mulation and integration of noisy evidence over
time. We model the dynamic evidence accumula-
tion as Bayesian sequential sampling, and in our
simple two-alternative task this is equivalent to a Se-
quential Probability Ratio Test (Wald & Wolfowitz,
1948).

2. The saccade thresholds are set to maximize
task-specific payo↵, but this is one part of a joint
optimization problem that includes all other policy
parameters that determine behavior in the task. In
our model of the LLDT, this consists of a separate
decision variable and threshold that determines the
task-level response to the entire trial (but does not
include architectural parameters, which are fixed).
These two thresholds together determine how long
the model fixates on individual strings, how many
strings it reads, and when and how it responds.

3. The shape of the payo↵ surface (and thus its
maxima) over the multi-dimensional policy space is
determined jointly by the payo↵ function and prop-
erties of the perceptual and oculomotor system, in-
cluding saccade programming duration, eye-brain-
lag, saccade execution duration, manual motor pro-
gramming duration, and representational noise.

Overview

We provide a brief overview of a typical trial
before focusing in on specific detail of each as-
pect of the model specification. See Figure 2 for
a schematic diagram of the full model, and Fig-
ure 3 for simulated traces from two sample trials.
On a given trial, the first fixation starts on the left-
most string. During each fixation, noisy information
about the fixated string is acquired at every timestep
(with some delay, the eye-brain-lag, (VanRullen &
Thorpe, 2001)). This noisy information is used
for updating the model’s beliefs about the status of
the current string as well as the trial as a whole.
This continues until either the string-level or the
trial-level belief reaches some threshold, at which
point either a saccade is initiated (if the string-level
threshold is reached), or a manual response is initi-
ated (if the trial-level threshold is hit). We will re-
fer to these thresholds as the saccade threshold and
decision threshold. Information acquisition contin-
ues while the saccade or manual response is being
programmed and until the saccade begins execution
(with some visual persistence o↵set). Once saccade
programming and execution is complete, the model
fixates on the following string (if there are strings
remaining), or initiates a response otherwise. Once
motor programming and execution is complete, the
model receives point feedback (i.e. the payo↵) and
the trial is over.

Dynamics assumptions: Oculo-motor ar-
chitecture and noise

The model’s sequential perceptual inference
mechanism is embedded in a simple oculomotor
control machine, drawing upon modern mathemati-
cal models of oculomotor control in reading. The
delays noted above (eye-brain-lag, saccade pro-
gramming and execution times, and motor time) are
drawn from gamma distributions (chosen for con-
venience because they are constrained to be posi-
tive and have been previously used to model these
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Modeling eye-movements Task and model

An adaptive model that performs the complete task
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Next, we update the string-level beliefs:

Prnew(S k = Wi|T ! N k, sk) =

=
Pr(sk |S k = Wi,T ! N k)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)

=
Pr(sk |S k = Wi)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)
(4)

Prnew(S k = Ni|T = Nk, sk) =

=
Pr(sk |S k = Ni,T = N k)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)

=
Pr(sk |S k = Ni)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)
(5)

Finally, we update the trial level beliefs:

Prnew(T =W|sk) =

=
Prold(sk |T =W)Prold(T =W)

Prold(sk)
=

=
Prold(sk |T ! N k)Prold(T =W)

Prold(sk)

(6)

Prnew(T = N j!k |sk) =

=
Prold(sk |T = N j)Prold(T = N j)

Prold(sk)

=
Prold(sk |T ! N k)Prold(T = N j)

Prold(sk)
,

(7)

Prnew(T = N k |sk) =

=
Prold(sk |T = N k)Prold(T = N k)

Prold(sk)

(8)

In order to make decisions, in addition to the proba-
bility that the trial is a word trial or not that we compute
above, we also need the probability that the string at po-
sition k is a word or nonword, i.e., Pr(S k ∈ ∪n

i=1Wi) and
Pr(S k ∈ ∪m

i=1Ni):

Pr(S k ∈ ∪n
i=1Wi) =

n∑

i=1

Pr(S k = Wi|T ! N k)Pr(T ! Nk)

(9)

Pr(S k ∈ ∪m
i=1Ni) = 1.0 − Pr(S k ∈ ∪n

i=1Wi) (10)

The full process then iterates, with each Prnew becom-
ing the next Prold.
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“Random walk” of Bayesian posterior update

accumulators that are assumed to gradually accrue noisy
sensory input until a threshold of activation is reached
[19,20]. More recent models proposed in the field of compu-
tational neuroscience explicitly model individual integrator
neurons [21–23] or assume that each accumulator corre-
sponds to a population of integrator neurons associated
with a particular choice alternative [24,25]. Importantly,
all these models assume that SAT is controlled by the
distance between the initial activity of the integrators (i.e.
the baseline) and the response threshold. If this difference is
small, decisions are fast but error-prone; if the difference is
large, decisions are accurate but slow (Figure 1). Therefore,
these models predict that neural changes associated with
SAT should be visible in brain areas involved in decision
making (i.e. areas containing integrator neurons), rather
than in areas specialized in stimulus encoding and motor
execution.

Mathematical models can account for SAT in two ways:
either by changing the baseline of accumulators or by
changing their threshold (Figure 2). Although many mod-
elling studies have assumed for simplicity that the base-
line stays constant and that SAT is controlled by changing
the threshold, in almost all mathematical models the
crucial factor controlling SAT is the baseline–threshold
distance. In most models an increase in baseline and a
corresponding decrease in threshold produce exactly the
same changes in simulated behavior. Thus, behavioral
data alone do not allow one to distinguish whether SAT
is controlled by changing the baseline, threshold, or both.
To address this question, one needs to analyze neural
activity.

fMRI studies of SAT: advantages and limitations
To date, the most direct evidence concerning the neural
basis of SAT comes from three recent BOLD-fMRI studies
in humans [4–6]. BOLD is an fMRI technique that reveals
the local changes in blood oxygenation that are closely
coupled with local increases in neural activation [26].
Compared to cell recordings in animals, human fMRI
has distinct advantages as a method for studying SAT.
First, unlike animals, human subjects can simply be
instructed to be fast or accurate. Furthermore, fMRI per-
mits whole-brain coverage at a spatial resolution sufficient
to delineate regional changes in activation. Whole-brain
coverage is important for studying phenomena, like SAT,
that are likely to be dependent on the interplay between
various brain areas.

Two general limitations of fMRI are its low spatial and
temporal resolution. In contrast to neurophysiological
recordings, fMRI does not allow one to monitor the activity
of specific integrator neurons as evidence accumulates over
time. In addition to these general limitations, fMRI studies
of SAT are also confronted with two specific challenges.
First, as pointed out by van Veen et al. [6], the amplitude of
decision-related BOLD responses is not only proportional
to the baseline–threshold distance but also to the duration
of the decision process [26], and this duration is likely to be
longer in the accuracy condition. Therefore it is hard to
attribute changes in decision-related BOLD signals
unequivocally to changes in baseline–threshold distance.
Second, it is difficult to examine response thresholds with

Figure 1. An accumulator model account of SAT. The figure shows a simulation of
a choice between two alternatives. The model includes two accumulators, whose
activity is shown by blue lines. The inputs to both accumulators are noisy, but the
input to the accumulator shown in dark blue has a higher mean, because this
accumulator represents the correct response. Lowering the threshold (horizontal
lines) leads to faster responses at the expense of an increase in error rate. In this
example, the green threshold leads to a correct but relatively slow response,
whereas the red threshold leads to an incorrect but relatively fast response.

Figure 2. Schematic illustration of changes in the activity of neural integrators associated with SAT. Horizontal axes indicate time, while vertical axes indicate firing rate.
The blue lines illustrate the average activity of a neural integrator selective for the chosen alternative, and the dashed lines indicate baseline and threshold. (a) Accuracy
emphasis is associated with a large baseline–threshold distance. (b,c) Speed emphasis can be caused either by increasing the baseline (panel b) or by lowering the
threshold (panel c); in formal models, these changes are often mathematically equivalent.

Review Trends in Neurosciences Vol.33 No.1
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OPTIMAL CONTROL =
 setting thresholds optimally

OPTIMAL STATE ESTIMATION =
evidence integration 
via Bayesian update

Graph from Bogacz (2009), TINS.
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Modeling eye-movements Task and model

Bayesian priors and stimulus representation

Model maintains belief probabilities over:

(a) probability distribution over all possible strings in the currently
fixated position;

(b) the probability of a nonword in each position; probability current
trial is a word trial is 1− sum over these.

The prior over (a) is based on Brown Corpus frequency; prior over (b) is

probability of a nonword trial (0.5) divided by the # of positions (6).

The string stimulus is represented with a simple indicator vector coding

(length 26 × 4) (Norris, 2009). At each sample (10ms), Guassian noise

of mean zero and SD = 1.2 (more on this) is added to the true

representation.
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Modeling eye-movements Task and model

Sample model behavior
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Modeling eye-movements Task and model

Sample model behavior
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Modeling eye-movements Task and model

Generating predictions

Selecting a policy (pair of thresholds) “programs” the
machine to perform the task.

Policy selected through payoff optimization—not data fitting.

Optimal Optimal
Payoff condition Saccade Threshold Response Threshold

Accuracy 0.99 0.999
Balanced 0.97 0.999

Speed 0.92 0.99

I.e, π∗
speed = (0.92, 0.99) and so on. With fixed policy, machine generates

dozens of behavioral measures (e.g. RTs, errors, RTs for accurate vs./

inaccurate, fixation durations for words, nonwords, frequency effects, . . . )

Lewis (University of Michigan) Optimal Control Approaches 21 June 2012
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Modeling eye-movements Task and model

Finding the sweet spot: Payoff as function of thresholds

π∗ = argmaxπ∈ΠEtrial∼ExperimentU(π, trial) (1)
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Modeling eye-movements Task and model

Payoff as a function of behavior
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Modeling eye-movements Model vs. human

Model and human at level of trial
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Modeling eye-movements Model vs. human

Model and human at level of trial
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Modeling eye-movements Model vs. human

Model and human at level of word/string
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Modeling eye-movements Model vs. human
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Modeling eye-movements How architecture shapes adaptation

1 What determines the nature of eye-movements in linguistic
tasks?

The task and model
Predictions vs. human behavior
How architecture shapes adaptation

2 Conclusions and looking ahead

Lewis (University of Michigan) Optimal Control Approaches 21 June 2012



Modeling eye-movements How architecture shapes adaptation

Does the processing architecture matter?

The theoretical claim here is that eye-movement control is jointly
shaped by both task payoff and architecture. What is the evidence
for this?

Through modeling we can explore adaptation to different
architectures than the one hypothesized for the human oculomotor
system.

Lewis (University of Michigan) Optimal Control Approaches 21 June 2012



Modeling eye-movements How architecture shapes adaptation

The “minimal model”
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Next, we update the string-level beliefs:

Prnew(S k = Wi|T ! N k, sk) =

=
Pr(sk |S k = Wi,T ! N k)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)

=
Pr(sk |S k = Wi)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)
(4)

Prnew(S k = Ni|T = Nk, sk) =

=
Pr(sk |S k = Ni,T = N k)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)

=
Pr(sk |S k = Ni)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)
(5)

Finally, we update the trial level beliefs:

Prnew(T =W|sk) =

=
Prold(sk |T =W)Prold(T =W)

Prold(sk)
=

=
Prold(sk |T ! N k)Prold(T =W)

Prold(sk)

(6)

Prnew(T = N j!k |sk) =

=
Prold(sk |T = N j)Prold(T = N j)

Prold(sk)

=
Prold(sk |T ! N k)Prold(T = N j)

Prold(sk)
,

(7)

Prnew(T = N k |sk) =

=
Prold(sk |T = N k)Prold(T = N k)

Prold(sk)

(8)

In order to make decisions, in addition to the proba-
bility that the trial is a word trial or not that we compute
above, we also need the probability that the string at po-
sition k is a word or nonword, i.e., Pr(S k ∈ ∪n

i=1Wi) and
Pr(S k ∈ ∪m

i=1Ni):

Pr(S k ∈ ∪n
i=1Wi) =

n∑

i=1

Pr(S k = Wi|T ! N k)Pr(T ! Nk)

(9)

Pr(S k ∈ ∪m
i=1Ni) = 1.0 − Pr(S k ∈ ∪n

i=1Wi) (10)

The full process then iterates, with each Prnew becom-
ing the next Prold.
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The “minimal model”
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Next, we update the string-level beliefs:

Prnew(S k = Wi|T ! N k, sk) =

=
Pr(sk |S k = Wi,T ! N k)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)

=
Pr(sk |S k = Wi)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)
(4)

Prnew(S k = Ni|T = Nk, sk) =

=
Pr(sk |S k = Ni,T = N k)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)

=
Pr(sk |S k = Ni)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)
(5)

Finally, we update the trial level beliefs:

Prnew(T =W|sk) =

=
Prold(sk |T =W)Prold(T =W)

Prold(sk)
=

=
Prold(sk |T ! N k)Prold(T =W)

Prold(sk)

(6)

Prnew(T = N j!k |sk) =

=
Prold(sk |T = N j)Prold(T = N j)

Prold(sk)

=
Prold(sk |T ! N k)Prold(T = N j)

Prold(sk)
,

(7)

Prnew(T = N k |sk) =

=
Prold(sk |T = N k)Prold(T = N k)

Prold(sk)

(8)

In order to make decisions, in addition to the proba-
bility that the trial is a word trial or not that we compute
above, we also need the probability that the string at po-
sition k is a word or nonword, i.e., Pr(S k ∈ ∪n

i=1Wi) and
Pr(S k ∈ ∪m

i=1Ni):

Pr(S k ∈ ∪n
i=1Wi) =

n∑

i=1

Pr(S k = Wi|T ! N k)Pr(T ! Nk)

(9)

Pr(S k ∈ ∪m
i=1Ni) = 1.0 − Pr(S k ∈ ∪n

i=1Wi) (10)

The full process then iterates, with each Prnew becom-
ing the next Prold.
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Payoff structure & predictions for the minimal model
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Payoff structure & predictions for the minimal model
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Model fit for the alternative architectures
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Conclusion

1 What determines the nature of eye-movements in linguistic
tasks?

2 Conclusions and looking ahead
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Conclusion

Summary

We applied optimal control and state estimation techniques
to pursue, computationally, an interesting theoretical idea.
Doing so yielded two things: arg max

organism structure 

(constraints) task 
goals (

payoff)

en
vir

on
men

t
 st

ru
ctu

re

behavior (optimal policies)

1 What determines the nature of eye-movements in linguistic tasks?
Answer: Eye-movement control is the solution to a constrained
optimization problem posed by task structure and payoff, linguistic
knowledge, and oculomotor processing architecture.

2 A novel empirical demonstration: Humans adapt their oculomotor
control at the level of single fixation durations to maximize payoff in
linguistic tasks, and do so in ways sensitive to the specific
contingencies of the task at hand.
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Conclusion

Stronger ties between psycholinguistics and linguistics and
other areas of cognitive science?

Bayesian memory & perception

reinforcement learning

decision making

rational analysis

bounded rationality

psycholinguistics:
classic parsing strategies
rational approaches
language-as-action

syntactic theory

language evolution

MEMORY constraints
(CHANNEL CAPACITY)

PERCEPTUAL/
OCULAR-MOTOR 

constraints

PARSING 
PROCESSES

SUBJECTIVE UTILITY 
FUNCTION

Bounded Optimal
 Control Analysis

ADAPTIVE, INTEGRATED  
CONTROL POLICIES

 for PARSING, EYE-MOVEMENTS, 
ACTION and COGNITION

TASK 
ENVIRONMENT 
(linguistic stimuli)
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Conclusion

Optimal control and syntactic theory and evolution??

The question we can pose is: What optimization problem
(specifically, bounded optimal control problem) is human language
the solution to?

This offers a perspective on language evolution/emergence
that complements existing approaches by placing emphasis on
how the details of cognitive architecture and utility shape
language, abstracting away from processes of evolution.

It perhaps offers another way to pursue the “Strong
Minimalist” thesis of optimality in language (recent work by
Chomsky).

For more, see Bratman, Shvartsman, Lewis & Singh (2010) on my web

site.
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Conclusion

Grammar as bounded optimal policy
Bratman, Shvartsman, Lewis & Singh (2012)

Table 1: Summary of three sets of experiments and policies learned. See text for detailed description.

ENVIRONMENT AGENT MEMORY LEXICON SIZE (S) PROPERTIES OF EMERGENT LINGUISTIC SYSTEM

Two Rooms

one symbol
working memory
+ one symbol
long-term
memory

3

Association and systematic order, where in addition
single symbols uttered in isolation denote specific box-
key combinations. Can only achieve 75% success.

4 Association and systematic symbol order. SPEAKER
first describes the box, then the key (see Figure 2b).

8
Highly context-dependent and idiosyncratic symbol
meanings. For example key 2 is represented by sym-
bol 4 if uttered before box, but symbol 5 after.

16 Each symbol denotes a box-key combination. For ex-
ample symbol 5 means key 1 and box 1.

Two rooms

two symbol
working memory
(no long-term
memory)

3 Similar to case with 3 symbols above.

4
Complex lexical forms. Describes entire box-key com-
bination with two symbols which can be observed si-
multaneously by LISTENER effectively creating a 2-
symbol length word (see Figure 3b).

One room

one symbol
working memory
+ one symbol
long-term
memory

3 Symbols act as direct orders to LISTENER, but other-
wise policy is similar to the cases of 3 symbols above.

4

Association and symbol order, but no storing or re-
trieving from long-term memory is necessary because
LISTENER can act immediately upon hearing a symbol
(see Figure 4b).

Experiment set 1: Exploring constraints on the lexicon.
We explore four different lexicon sizes: S = 16, S = 8, S = 4,
and S = 3. Figure 2 shows 30 independent learning trajecto-
ries for each value of S. The high variance is due to the nature
of the learning algorithm which may not converge for both
agents every trial (or may get stuck on a less-than-optimal
policy)—but what we are interested in are the best policies
learned (because the mechanism used can be improved sig-
nificantly beyond our initial implementation of Sarsa(l) with
fixed parameters across all experiments).

The first four rows of Table 1 summarize the results. Here
we will discuss the resulting policies in more detail. For 16
available symbols, as expected, a different symbol is associ-
ated with each box-key combination and the agents arrive at
perfect performance. With eight symbols, again the best per-
forming policies use two-symbol utterances for each box-key
combination, but not always in the same order (i.e. for some
combinations keys are uttered first and in other boxes are ut-
tered first). For the case of four symbols, the best performing
policies communicate box and key in a particular order, with
each symbol able to refer to either box or key (see Figure 2b).
Of particular interest is that the the agents settle on a consis-
tent order across box-key combinations, but this order might
be different over seperate experiments: the linear position is

necessary but the specific order is not. Finally, for the case of
only three symbols the agents again learn a policy where lin-
ear symbol order matters. Curiously, this alone should only
afford success in 56% of combinations; some policies how-
ever achieved 75% success. The policy succeeds in the addi-
tional box-key combinations by associating each with a single
symbol uttered in isolation. That is, with limitations in sym-
bol size utterance length becomes informative in addition to
positional information.

As we can see, this method of systematically altering only
a single constraint (lexicon size) yields broad variation in lin-
guistic properties even in this extremely simple domain, in-
cluding the denotation of symbols and the use of order in-
formation. The case of three and four symbols suggests that
limited memory (paired with environmental pressures) leads
to the systematic use of symbol order in optimal performance,
especially when the lexicon size is limited.

Experiment set 2: Modified agent constraints. Here our
aim is to explore further what specific constraints led to the
systematic use of order in Experiment 1. We alter the con-
straints on the agents by allowing the LISTENER two symbols
in working memory instead of one (and no long-term mem-
ory). All the other dynamics of the Treasure Box Domain
are kept constant. The actions of store and retrieve have new
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