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The idea: Applying Newell & Simon's scissors to language
(plus utility maximization)

All aspects of linguistic processing and
behavior—from parsing strategies to
production strategies to control of short
and long-term memory to eye-movement
control—may be understood as the solution
to the constrained optimization problem
posed by the external task environment,
task structure, and internal processing

structure/constraints (e.g. representation
noise, knowledge). Howes, Lewis & Vera (2009,
Psychological Review)

We'll pursue this via the application of state-of-the-art theoretical ideas

... from the 1940-60s: optimal control and optimal state estimation.
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Modeling eye-movements

Overview

@ What determines the nature of eye-movements in linguistic
tasks?

@ The task and model
@ Predictions vs. human behavior
@ How architecture shapes adaptation

© Conclusions and looking ahead
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The List Lexical Decision Task

lead hilt robe helm guru east

Version of this task first used by Schvanaveldt & Meyer (1973);
Meyer & SchvanavedIt (1972)
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Explicit payoffs: Motivating with cash
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Explicit payoffs: Motivating with cash
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Modeling eye-movements

Task and model

An adaptive model that performs the complete task

Experiment Environment

Button press indicating trial response

Stimulus
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See Legge et al (1997); Bicknell & Levy (2010); Ratcliff & Mckoon (2008); Norris

(2009).
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“Random walk” of Bayesian posterior update

Safe and Slow

N\
S OPTIMAL CONTROL =
,  setting thresholds optimally

Risky and Fast G

Activity of accumulators

OPTIMAL STATE ESTIMATION =
4--—-—---—-"""-7 evidence integration
via Bayesian update

Time

TRENDS in Neurosciences

Graph from Bogacz (2009), TINS.
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Bayesian priors and stimulus representation

Model maintains belief probabilities over:

(a) probability distribution over all possible strings in the currently
fixated position;

(b) the probability of a nonword in each position; probability current
trial is a word trial is 1— sum over these.

The prior over (a) is based on Brown Corpus frequency; prior over (b) is
probability of a nonword trial (0.5) divided by the # of positions (6).

The string stimulus is represented with a simple indicator vector coding
(length 26 x 4) (Norris, 2009). At each sample (10ms), Guassian noise
of mean zero and SD = 1.2 (more on this) is added to the true
representation.
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Sample model behavior

CORRECT WORD Trial
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Sample model behavior
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Generating predictions

@ Selecting a policy (pair of thresholds) “programs” the
machine to perform the task.

@ Policy selected through payoff optimization—not data fitting.

Optimal Optimal
Payoff condition Saccade Threshold Response Threshold
Accuracy 0.99 0.999
Balanced 0.97 0.999
Speed 0.92 0.99
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Generating predictions

@ Selecting a policy (pair of thresholds) “programs” the
machine to perform the task.

@ Policy selected through payoff optimization—not data fitting.

Optimal Optimal
Payoff condition Saccade Threshold Response Threshold
Accuracy 0.99 0.999
Balanced 0.97 0.999
Speed 0.92 0.99
le, 7%,ccq = (0.92,0.99) and so on. With fixed policy, machine generates

dozens of behavioral measures (e.g. RTs, errors, RTs for accurate vs./
inaccurate, fixation durations for words, nonwords, frequency effects, .. .)
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Finding the sweet spot: Payoff as function of thresholds

Accuracy Payoff
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Payoff as a function of behavior

Payoffs vs. SFD Payoffs vs. Trial RT
(MODEL, noise=1.20) (MODEL, noise=1.20)
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Model and human at level of trial

Response Time for Word Trials Response Time for Nonword Trials Percent Correct
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Modeling eye-movements

Model and human at level of trial

Trial Response Time (ms)
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Model and human at level of word/string

Single Fixation Duration SFD by Frequency Class Frequency Effect on SFD
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Model and human at level of word/string
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Model and human: Words vs. nonwords, position effects

Word SFD by correctness Nonword SFD by correctness
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Model and human: Words vs. nonwords, position effects
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Model and human: Words vs. nonwords, position effects

Word SFD by correctness Nonword SFD by correctness Word SFD by Position in List
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Model and human: Words vs. nonwords, position effects
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Model and human: Words vs. nonwords, position effects
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Modeling eye-movements

o What determines the nature of eye-movements in linguistic
tasks?

@ How architecture shapes adaptation

A
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Does the processing architecture matter?

The theoretical claim here is that eye-movement control is jointly
shaped by both task payoff and architecture. What is the evidence
for this?

Through modeling we can explore adaptation to different
architectures than the one hypothesized for the human oculomotor
system.
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The “minimal del”
€ minimal modae

Experiment Environment

lead hilt (robe ) helm guru east
Feedback
Button press indicating trial response Stimulus
).
—| Oculomotor System (g q‘ 1)
Initiate i
e e eye-brainlag ~ Gamma(50ms
S ‘saccade program saccade | ( ) | Reward
~ Gamma(125ms) |~ Gamma(40ms) . N Function
program Noisy sample S from position k 10)
®
Manual n .
response Posterior Update 2 Lexicon +

Gamma(250ms)

Proen(T = W|s5),... (see Appendix)

v

Model of

experiment

Initiate press

®

(Bounded) Optimal Control

-

optimal thresholds

<

saccade @
decision J

trial
decision

A

Lewis (University of Michigan)

Optimal Control Approaches

21 June 2012



Modeling eye-movements How architecture shapes adaptation

The “minimal model”
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Payoff structure & predictions for the minimal model

ACC payoff vs. Saccade Threshold BAL payoff vs. Saccade Threshold SPD payoff vs. Saccade Threshold
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Payoff structure & predictions for the minimal model

ACC payoff vs. Saccade Threshold
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How architecture shapes adaptation
Model fit for the alternative architectures

Model Error vs. Noise for Architectural Variants

—— Complete architecture »
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Conclusion

© Conclusions and looking ahead
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Summary

We applied optimal control and state estimation techniques ", &7 o
to pursue, computationally, an interesting theoretical idea.
Doing so yielded two things:

© What determines the nature of eye-movements in linguistic tasks?
Answer: Eye-movement control is the solution to a constrained
optimization problem posed by task structure and payoff, linguistic
knowledge, and oculomotor processing architecture.

@ A novel empirical demonstration: Humans adapt their oculomotor
control at the level of single fixation durations to maximize payoff in
linguistic tasks, and do so in ways sensitive to the specific
contingencies of the task at hand.
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Conclusion

Stronger ties between psycholinguistics and linguistics and
other areas of cognitive science?

Bayesian memory & perception

reinforcement learning

decision making

rational analysis

bounded rationality

psycholinguistics:
classic parsing strategies
rational approaches
language-as-action

syntactic theory

language evolution
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Conclusion

Optimal control and syntactic theory and evolution??

The question we can pose is: What optimization problem
(specifically, bounded optimal control problem) is human language
the solution to?

e This offers a perspective on language evolution/emergence
that complements existing approaches by placing emphasis on
how the details of cognitive architecture and utility shape
language, abstracting away from processes of evolution.

@ It perhaps offers another way to pursue the “Strong

Minimalist” thesis of optimality in language (recent work by
Chomsky).

For more, see Bratman, Shvartsman, Lewis & Singh (2010) on my web
site.
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Conclusion

Grammar as bounded optimal policy
Bratman, Shvartsman, Lewis & Singh (2012)

ENVIRONMENT AGENT MEMORY  LEXICON SIZE (§) PROPERTIES OF EMERGENT LINGUISTIC SYSTEM
Association and systematic order, where in addition
3 single symbols uttered in isolation denote specific box-
key combinations. Can only achieve 75% success.
one symbol 4 Association and systematic symbol order. SPEAKER
working memory first describes the box, then the key (see Figure 2b).
Two Rooms + one symbol Highly context-dependent and idiosyncratic symbol
long-term 8 meanings. For example key 2 is represented by sym-
memory bol 4 if uttered before box, but symbol 5 after.
16 Each symbol denotes a box-key combination. For ex-
ample symbol 5 means key I and box 1.
Similar to case with 3 symbols above.
two symbol 3
T . working memory
WO rooms (no long-term Complex lexical forms. Describes entire box-key com-
memory) 4 bination with two symbols which can be observed si-
multaneously by LISTENER effectively creating a 2-
symbol length word (see Figure 3b).
3 Symbols act as direct orders to LISTENER, but other-
one symbol wise policy is similar to the cases of 3 symbols above.
o working mbenllory Association and symbol order, but no storing or re-
ne room + one symbo trieving from long-term memory is necessary because
long-term 4
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