
Interpreted Declarative
Representations of Task

Knowledge
June 21, 2012

Randolph M. Jones, PhD

The Problem

• Knowledge engineering/Behavior modeling is costly
• Much of this cost lies in the design, encoding, and debugging of

models/programs
• Iterative Soar model development becomes increasingly expensive as the

models grow
• Knowledge is encoded at a low-level where the details overwhelm the

modeler’s/engineer’s ability to understand and maintain the model
• Reuse of models and model components is still rare

• It is challenging to reuse behavior elements from one application in
another within the same architecture

• Reuse across architectures is nearly impossible

Soar Workshop 2012 2

Advantages of a High-Level Representation

• Software engineering has demonstrated improved coding efficiency from
languages that decrease lines of code, increase encapsulation, and
decrease complexity/branching

• Design at the representation level, hide implementation details
• Free modeler from architecture-level details
• Emphasize understandability, maintainability, and reuse

• Prior research with HLSR demonstrated decreased design-to-coding times
for novice modelers and significant reduction in code size and complexity

• Opportunities for non-engineers to configure high-level code/parameters

Soar Workshop 2012 3

Advantages of a Canonical Representation

• It would be beneficial to increase the ease the creation of reusable
representations
• Higher levels of abstraction have wider reuse potential

• Reuse across behavior models
• Using goal and knowledge representations in multiple execution agents

• Reuse across applications/model types
• A single knowledge base for planning and execution agents
• A single knowledge base for execution and explanation agents
• A single knowledge base for different architectures/engines
• Differences between planning, execution, and explanation can be

embedded in the interpreter or as add-on knowledge

Soar Workshop 2012 4

Interpreters vs. Compilers

• A compiler must be complete before you can use it
• Difficult to experiment with, add, or change language features
• Difficult to track down bugs if the compiler is not mature

• An interpreter allows simultaneous prototyping and development of the
language and the models that are specified in the models

• Only need to implement those language features that a model actually uses
• Easier to add, change, and debug language features
• Code translation is faster and “just-in-time”

• Compilers take longer to translate, but provide the opportunity to
generate much more efficient code

• Easier to write interpreters “piece-meal” for different architectures
• Easier to build alternative interpreters for portions of the language

• Ultimate goal should be a compiler generating efficient code for a fixed, formal
language

• OR, can chunking be the compiler?

5 Soar Workshop 2012

Declarative Goal Representation

• Goal definitions explicitly specify local and global information to be
accessed

• Two types of subgoals:
• Achieve: Remove subgoal as soon as it is achieved once, or if it becomes

“deactivated”
• Maintain: Remove subgoal only if it becomes “deactivated”

• Automatic binding of parameters across supergoal/subgoal
• Strong typing and error checking available if desired
• Declarative representation of subgoal-activation and goal-achievement

conditions
• Using abstract features that are implemented in domain-specific Soar

rules
• Query system ensures that elaborations/computations occur only when

something is ready to “consume” them
• Activation conditions, achievement conditions, choice conditions

6 Soar Workshop 2012

Goal Representation Examples (Soar-ified XML)

^goal

 ^name fly-flight-plan

 ^parameter

 ^name current-point

 ^global-name current-point

 ^category mission

 ^parameter

 ^name arrived-at-point

 ^property-name arrived-at-point

 ^property-object current-point

7 Soar Workshop 2012

Goal Representation Examples (Soar-ified XML)

^goal

 ^name fly-flight-plan

 ^achieve

 ^name fly-control-route

 ^activate-when

 ^not-equal

 ^parameter-value arrived-at-point

 ^value true

 ^achieve

 ^name fly-control-point

 ^activate-when

 ^equal

 ^parameter-value arrived-at-point

 ^value true

8 Soar Workshop 2012

Goal Representation Examples (Soar-ified XML)

^goal

 ^name fly-control-route

 ^parameter

 ^name current-point

 ^global-name current-point

 ^category mission

 ^parameter

 ^name arrived-at-point

 ^property-name arrived-at-point

 ^property-object current-point

 ^parameter

 ^name waypoint

 ^value

 ^get-waypoint-by-name current-point

9 Soar Workshop 2012

Goal Representation Examples (Soar-ified XML)

 ^goal

 ^name fly-control-route

 ^maintain

 ^name waypoint-computer-programmed

 ^bind-input

 ^parameter waypoint

 ^subgoal waypoint

 ^activate-when true

 ^maintain

 ^name maintain-group-heading

 ^bind-input

 ^parameter waypoint

 ^subgoal waypoint

 ^activate-when

 ^achieved-subgoal waypoint-computer-programmed

10 Soar Workshop 2012

Goal Representation Examples (Soar-ified XML)

 ^goal

 ^achieved-when

 ^equal

 ^parameter-value arrived-at-point

 ^value true

11 Soar Workshop 2012

Other Declarative Information (Soar-ified XML)

^formation
 ^type bearing

 ^sub-type defensive

 ^size 4

 ^sub-formation

 ^type bearing

 ^sub-type defensive

 ^size 2

 ^lead lead

 ^wingman wingman

 ^wingman-side

 ^opposite second-lead

^sub-formation

 ^type bearing

 ^sub-type defensive

 ^size 2

 ^lead lead

 ^wingman second-lead

^sub-formation

 ^type bearing

 ^sub-type defensive

 ^size 2

 ^lead second-lead

 ^wingman second-wingman

 ^wingman-side

 ^same second-lead

12 Soar Workshop 2012

Next steps

• Continue developing and formalizing declarative representation, together
with execution-agent interpreter (three projects)

• Develop explanation-agent interpreter (one project)
• Develop planning-agent interpreter (one project)
• Investigate mapping to alternative declarative behavior representations

(one project)
• Develop interpreter that stores declarative representations in semantic

memory instead of working memory (internal R&D)
• Determine whether this is actually useful from performance and

learning perspectives

13 Soar Technology, Inc. Proprietary Soar Workshop 2012

Summary

• Nuggets
• Representation is working and being used in multiple projects
• Allows the model builder to focus on higher level abstractions and error

checking, independent of production/operator-level details
• Interpreter eases active, rapid development of the language

• Coal
• Haven’t yet built a number of interpreters we want to try

• UM-Style interpreter
• Explanation-agent interpreter
• Planning interpreter

• Not sure where to put the representation
• Intuition is that working memory is the wrong place
• Future work will evaluate working memory vs. semantic memory
• May still want to use a compiler in the long run

14 Soar Technology, Inc. Proprietary Soar Workshop 2012

	Interpreted Declarative Representations of Task Knowledge
	The Problem
	Advantages of a High-Level Representation
	Advantages of a Canonical Representation
	Interpreters vs. Compilers
	Declarative Goal Representation
	Goal Representation Examples (Soar-ified XML)
	Goal Representation Examples (Soar-ified XML)
	Goal Representation Examples (Soar-ified XML)
	Goal Representation Examples (Soar-ified XML)
	Goal Representation Examples (Soar-ified XML)
	Other Declarative Information (Soar-ified XML)
	Next steps
	Summary

