

Soar Workshop, June 2013

New Computing Hardware Based On Cognitive Architectures?

Braden Phillips, Michael Liebelt, Brian Ng

Kindly Presented By

John Laird

The Hypothesis

New computing hardware optimised for cognitive architectures will

- better exploit the characteristics of future microelectronics
- accelerate the development of cognitive architectures
- accelerate the development of advanced general agents
- underpin a new generation of computing based on artificial general intelligence

Do We Need A New Kind Of Computing Machine?

- The von-Neumann architecture has been an incredible success
- 5 decades of performance increases enabled by:
 - increasing number of transistors per IC
 - was doubling every 2 years
 - now doubling every 3 years
 - over next 15 years, expected to double every 3.8 years
 - increasing clock frequency
 - was doubling every 18 months
 - expected to less than double over next 15 years
 - architectural innovations
 - e.g multi-level caches, on-chip networking, multi-core

(figures based on 2011 ITRS roadmap)

Do We Need A New Kind Of Computing Machine?

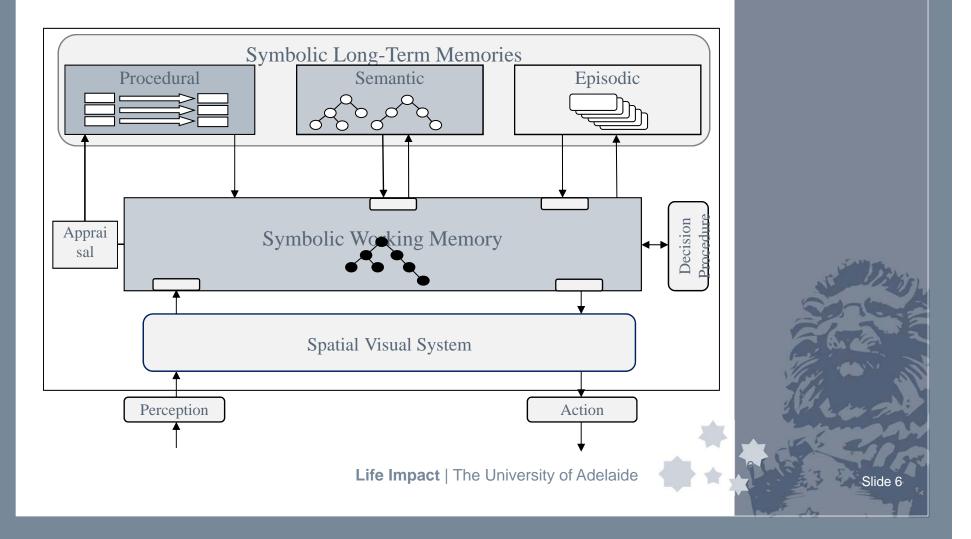
- Number of transistors per IC still growing
 - 10 billion transistors per IC today
 - expect 100 billion in 2026
- Not seeing a proportional increase in processor performance
 - diminishing returns from 'more of the same' (more cores, more cache)
 - power limited to around 150 W per IC
- How do we achieve higher functionality per transistor per Watt?

We need a need approach.

- Inspired by the human brain
 - power efficiently achieves complex behaviour
 - using of the order of 100 billion switching devices

Future Directions In Microelectronics

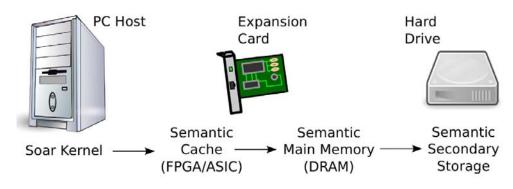
- 100 billion switching elements
 - = fine grained parallelism
 - = distributed/interleaved storage and computation
 - power limitation \Rightarrow cannot all be switching all the time
- Clock frequencies in the 10s GHz
 - = faster than switching in the brain
 - much less interconnected than the brain
 - suggests may need to packet switch data (on-chip networks)
 or have longer wires at lower switching frequency
- Less reliable circuit operation
 - increase in transient and permanent errors expected
 - may need fault-tolerant architectures


Cognitive Architectures As The Basis Of New Computing Machines?

- Cognitive architectures are at the right level of abstraction i.e. the same as computer architecture
- Fixed processing blocks map directly to hardware units
- Naturally present opportunities for fine-grained parallelism and for distributed memory and computation (within blocks) e.g.
 - production rule matching
 - spreading activation
 - memory searches
- Also parallelism at a coarser scale (between blocks) e.g.
 - learning
 - episodic memory

Soar 9 Structure

A Note On Hardware Development


- Incremental development is possible
 - Can realise hardware blocks as separate modules e.g. a plug-in episodic memory box
 - Some blocks in Soar have changed very slowly over time e.g. the Rete
- Hardware can be flexible
 - Modern hardware development cycle is not unlike software
 - Designed in a hardware description language (e.g. Verilog)
 - Automatic synthesis to reprogrammable logic (e.g. FPGA) or to application specific IC.

A Hardware Semantic Memory For Soar

- Aim: a plug-in semantic memory system
 - scalable to very large knowledge bases
 - low latency (e.g. < 5 µs queue-based retrieval²)
 - base-level and spreading activation
- Approach:
 - semantic memory hierarchy
 - virtual memory

2. the main limitation is PCIe bus latency.

A Hardware Semantic Memory For Soar

- We are beginning with a level 1 semantic cache block.
- Why start here?
 - fine-grained parallelism for search and spreading activation
 - lots of transistors with limited switching activity
 - a stepping-stone to episodic memory

Some Items To Ponder

- What aspects of Soar would most benefit from hardware acceleration?
 - We have started with semantic memory...
 - ...and we plan to move on to episodic memory.
 - We have also started looking at the Rete. Looks promising:
 - Lots of fine-grained parallelism.
 - Not much communication between processing nodes.
 - What else?
- How has the evolution of Soar been influenced by considerations of the underlying processor architecture?
 - What might be possible if we changed the assumptions?

