The Computational Problem of Prospective Memory

Justin Li John Laird

Computer Science and Engineering University of Michigan justinnh,laird@umich.edu

2013-06-05

A Survey

Take 10 seconds to think of the last time you forgot something

A Survey

- Take 10 seconds to think of the last time you forgot something
- Raise your hand if you forgot to do something

A Survey

- Take 10 seconds to think of the last time you forgot something
- Raise your hand if you forgot to do something
- A significant portion of forgetting is of intentions¹
- This is prospective memory (aka. delayed intentions)

¹Crovitz and Daniel (1984), Terry (1988)

Overview

- Goal: define the computational requirements of prospective memory
 - in the context of ACT-R and Soar

Overview

- Goal: define the computational requirements of prospective memory
 - in the context of ACT-R and Soar
- Introduction
- Defining Prospective Memory
- Prospective Memory Stages
 - Encoding
 - Retention
 - Initiation
 - Execution
 - Completion
- Summary

A concrete example:

- Finish milk during cereal breakfast
- Make goal to buy milk after work
- Think about research, give presentations, etc.
- On the way home from work, how does the agent remember to buy milk?

A concrete example:

- Finish milk during cereal breakfast
- Make goal to buy milk after work
- Think about research, give presentations, etc.
- On the way home from work, how does the agent remember to buy milk?

An intention has:

- a target
- an action

A concrete example:

- Finish milk during cereal breakfast
- Make goal to buy milk after work
- Think about research, give presentations, etc.
- On the way home from work, how does the agent remember to buy milk?

An intention has:

- a target
- an action

Stages of prospective memory:

- 1. Encoding
- 2. Retention
- 3. Initiation
- 4. Execution
- 5. Completion

A concrete example:

- Finish milk during cereal breakfast
- Make goal to buy milk after work
- Think about research, give presentations, etc.
- On the way home from work, how does the agent remember to buy milk?

An intention has:

- a target
- an action

Stages of prospective memory:

- 1. Encoding
- 2. Retention
- 3. Initiation
- 4. Execution
- 5. Completion

Forgetting plays a key role in prospective memory

Forgetting and Prospective Memory

- But why do agents forget?
- ACT-R: fixed buffers of fixed size, to model human memory
- Soar: activation decay of long-term memory elements, to reduce rule-matching cost
- Forgotten items can be recovered from long-term memory (LTM)
 - Although LTM elements may also be forgotten

Interactions between Memory and Intentions

- Characteristics of long-term memories differ:
 - representation
 - storage
 - dynamics
 - retrieval

Interactions between Memory and Intentions

- Characteristics of long-term memories differ:
 - representation
 - storage
 - dynamics
 - retrieval
- Examine effects on stages of prospective memory
- Emphasis on initiation

Encoding

The target and action are stored into the long-term memory of the agent.

Necessary agent and architectural processes:

representation Intention must be translated into LTM representation — possibly across multiple LTMs

storage Automatic, or agent initiated — agent must recognize that an intention has been formed

dynamics Agent may need to initiate rehearsal — agent must estimate amount necessary

retrieval N/A

Example: Deciding to buy milk after work

Retention

The agent pursues other goals while waiting for the perception of the target. The intention may be relegated to long-term memory

Necessary agent and architectural processes:

representation N/A

storage N/A

dynamics Agent may need to initiate rehearsal — agent must estimate amount necessary

retrieval N/A

Example: Performing other tasks during the day

Initiation

The agent perceives the target, and a window of opportunity arises. The agent must recognize it as the target of an intention.

Necessary agent and architectural processes:

representation N/A

storage N/A

dynamics May cause retrieval failure

retrieval Agent must create a retrieval cue

When should the cue be created?

Initiation

The agent perceives the target, and a window of opportunity arises. The agent must recognize it as the target of an intention.

Necessary agent and architectural processes:

representation N/A

storage N/A

dynamics May cause retrieval failure

retrieval Agent must create a retrieval cue

- When should the cue be created?
- Naïve solution: when the target is perceived.

Agent must retrieve the target into WM

Retrieval of target via procedural knowledge

- Agent must retrieve the target into WM
- Which requires recognizing the target in perception

- Agent must retrieve the target into WM
- Which requires recognizing the target in perception
- Which requires comparing the target to perception

- Agent must retrieve the target into WM
- Which requires recognizing the target in perception
- Which requires comparing the target to perception
- Which requires retrieving the target into WM

- Agent must retrieve the target into WM
- Which requires recognizing the target in perception
- Which requires comparing the target to perception
- Which requires retrieving the target into WM

Circular Knowledge Dependencies

It is *impossible* in the current framework to retrieve the intention only when it is needed

- Either the intention is already in memory
- Or procedural rules never fire

Claim: this is the fundamental problem of prospective memory

Circular Knowledge Dependencies

It is *impossible* in the current framework to retrieve the intention only when it is needed

- Either the intention is already in memory
- Or procedural rules never fire

Claim: this is the fundamental problem of prospective memory

Three classes of strategies used by humans:

- Preemptive Strategies
- Spontaneous Retrieval Strategies
- Noticing-Plus-Search Strategies

Preemptive Strategies

The agent retrieves the target and compares it to perception periodically or at context switches

Necessary agent and architectural processes:

representation N/A

storage N/A

dynamics Agent may need to rehearse intentions to prevent forgetting

retrieval Agent needs to iterate through potentially relevant intentions

Example: Repeating the need to buy milk every 15 minutes

Spontaneous Retrieval Strategies

The architecture automatically retrieves memory elements based on context

Necessary agent and architectural processes:

representation Stored target must directly match working memory

- storage N/A
- dynamics Dynamics in retrieval bias may effect intention returned

retrieval Done automatically by the architecture

Example: The need to buy milk "popping" up while leaving work

Noticing-Plus-Search Strategies

The architecture automatically provides metadata on working memory elements, prompting deliberate retrieval

Necessary agent and architectural processes:

representation Stored target must directly match working memory (for now)

storage N/A

dynamics N/A

retrieval Metadata may suggest cues for deliberate retrieval

Example: Feeling that something was forgotten while passing the grocery store

Circular Knowledge Dependencies

The Computational Problem of Prospective Memory

Introduction Definitions Encoding Retention Initiation Execution Completion Summary

Circular Knowledge Dependencies

The Computational Problem of Prospective Memory

Introduction Definitions Encoding Retention Initiation Execution Completion Summary

Circular Knowledge Dependencies

The Computational Problem of Prospective Memory

Execution

The agent performs the stored action.

Necessary agent and architectural processes: representation N/A storage N/A dynamics N/A retrieval N/A

Example: Buying milk

Completion

The agent must modify its memory such that the next perception of the target does not lead to action.

Necessary agent and architectural processes:

representation N/A

storage N/A

dynamics Architecture may not support modification or forgetting

retrieval N/A

Example: Not buying milk again the next day

Existing Agents

Claim: Circular knowledge dependencies is the fundamental problem of prospective memory

- Only a property of the agent in few models
- Altmann and Trafton (2002) implements a restricted preemptive strategy
- Li and Laird (2011) uses procedural memory, but is unscalable
- Li and Laird (2013) implements preemptive strategies more fully (next talk!)

Nuggets and Coal

Nuggets

- Circular knowledge dependency problem of prospective memory
- Map of memory designs and possible effects
- Initial implementations of two strategies
 - Preemptive strategies
 - Meta-memory judgment system

Coal

- Much architectural work to be done
 - Modifying long-term memory
 - Automatic retrievals
 - Meta-memory judgments

Circular Dependencies for Perception

- A similar dependency cycle exists for active perception
 - Must recognize opportunity to perceive target
 - Must perceive target to recognize opportunity
- This also applies to external memory
- Preemptive strategies continue to work
- Other strategies unexplored