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Background

Reinforcement Learning

Primary objective is to learn how to act, or to derive
an optimal policy
Prefer actions leading to positive rewards to actions leading to
negative rewards
Outcomes are are characterized as a discounted return,

∑∞
t=0 γ

trt

Deriving good estimates of these returns for different actions is
essential for many RL algorithms

See [Sutton and Barto, 1998] for an excellent primer.
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Background

Temporal Difference Method: Q-Learning

Given
a discount rate, γ
a Q-function, Q(s, a), to represent value estimates for
state-action pairs, and
an immediate reward, r,

the update rule is expressed:

Q(s, a) α← r + γmax
a∗

Q(s′, a∗) (1)

.
Without approximation, all Q(s, a) values are independent.

This uses O(|s| × |a|) memory.
This doesn’t support generalization.
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Background

Tile Coding: CMAC

A tile coding partitions the
state-space, providing a
coarser representation.
The CMAC (Cerebellar Model
Articulation Controller) is the
traditional approach to using
multiple tile codings.
[Sutton, 1996]
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Background

Soar-RL

Soar-RL provides Q-learning and Sarsa [Nason and Laird, 2004]
Conditions on RL-rules encode which features to test and how to
discretize continuous state, defining the mapping S ×A ⇒ Q

Can be one-to-one (if there no continuous features)
Can use coarse coding, effectively implementing tile coding
Potentially arbitrary, non-uniform abstraction

Typical generalizations in Soar-RL rules effectively implement
one or more tile codings

Mitchell Keith Bloch (University of Michigan) Online Value Function Improvement 4 / 20

http://bazald.com
http://www.umich.edu


Motivation

Motivation

We’re concerned with the problem of generating a value function
capable of supporting the computation of a near-optimal policy for
a task with

a large state-space
composed of many features,
some of which may be continous.

We’re additionally concerned with problems of
efficient learning,
computational limitations,
and memory limitations.
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Problems We’re Looking At

Overview of Our Work (In Progress)

We have broken down the problem into a number of subproblems:
1 Large, Sparse State-Spaces
2 Combining Values from Hierarchical/Overlapping Tilings
3 Credit Assignment for Hierarchical/Overlapping Tilings
4 Deciding When and Where to Refine the Value Function
5 Deciding How to Refine the Value Function
6 Complexities of These Approaches

Mitchell Keith Bloch (University of Michigan) Online Value Function Improvement 6 / 20

http://bazald.com
http://www.umich.edu


Problems We’re Looking At

Problem 1: Large, Sparse State-Spaces

Many agents developed using cognitive architectures operate in
environments with

large state-spaces,
state-spaces described by large numbers of features, or
continuous features which cannot be perfectly discretized.

Thankfully,
the portion of the environment an agent must explore is often
a relatively small subset of the state-space,
features are not totally independent from one another,
and satisfactory discretizations can usually be found.

Our strategy: hierarchical tile coding
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Problems We’re Looking At

Puddle World

Goal: Get to the upper-right
corner, avoiding the puddles if
possible.
2-dimensional state-space
Continuous-valued features
Four actions: North, South,
East, and West
Stochastic movement

See [Sutton, 1996].
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Problems We’re Looking At

What Does a Hierarchical Tile Coding Look Like?

A partial tiling for the “move North” action in Puddle World:

0 1

X

0
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Y
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Problems We’re Looking At

Problems 2 & 3: Hierarchical/Overlapping Tilings

Combining Values:
Summation is typical (i.e. linear function approximation).
This works for statically and dynamically generated tilings.

Credit Assignment:
The standard approach has been even credit assignment
between tiles.
We consider alternatives which shift credit from more
general tilings to more specific tilings over time.
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Problems We’re Looking At

Linear Function Approximation

Using
n weights, and
a Boolean function, φi(s, a), to determine whether to include
any given weight

Q(s, a) can be calculated:

Q(s, a) =
n∑

i=1

φi(s, a)wi, (2)

This can reduce memory usage substantially.
Done well, this may also support efficient generalization
from experience.
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Results—Part 1

Single Tilings vs Hierarchical: Puddle World

Performance for several agents using single tilings, and one using
a static hierarchical tiling, in Puddle World:
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Results—Part 1

Mountain Car

Goal Position

Inelastic Wall

-1.2

0.5

-0.5

Goal: Get to the top of the hill.
2-dimensional state-space
Continuous-valued features
Three actions: Accelerate
left, idle, and accelerate right
Some dynamics

See [Moore, 1991].
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Results—Part 1

Single Tilings vs Hierarchical: Mountain Car

Performance for several agents using single tilings, and one using
a static hierarchical tiling, in Mountain Car:

0 20,000 40,000 60,000 80,000 100,000

Step Number

−7,000

−6,000

−5,000

−4,000

−3,000

−2,000

−1,000

0

C
um

ul
at

iv
e

R
ew

ar
d

/#
E

pi
so

de
s

16x16
32x32
64x64
128x128
256x256
1-256 static even

Mitchell Keith Bloch (University of Michigan) Online Value Function Improvement 14 / 20

http://bazald.com
http://www.umich.edu


Problems We’re Looking At—Part 2

Problems 4 & 5: Refining the Value Function

When and Where:
Must determine when and where the value function is not
sufficiently specific to represent a near-optimal policy
Must do this online, in an incremental fashion
Must cope with error due to environmental stochasticity

Our criterion: Cumulative Absolute Bellman Error

How:
Must determine which features would be most beneficial
to consider
Must increase refinement of discretizations
Must do this online, in an incremental fashion, without using
a great deal of memory storing a model or instances
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Results—Part 2

Static vs Dynamic (Hierarchical): Puddle World

Results for one agent using a static hierarchical tiling and another
agent using an incremental hierarchical tiling in Puddle World:

Performance:
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Results—Part 2

Static vs Dynamic (Hierarchical): Mountain Car

Results for one agent using a static hierarchical tiling and two agents
using incremental hierarchical tilings (one with even credit assignment,
and one with 1/ ln(update count) credit assignment) in Mountain Car:

Performance:
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0 50,000 100,000 150,000 200,000

Step Number

0

50,000

100,000

150,000

200,000

250,000

300,000

N
um

be
ro

fT
ile

s
/W

ei
gh

ts
Weights: 1-256 static even
Weights: 1-256 incremental even
Weights: 1-256 incremental 1/ ln

Mitchell Keith Bloch (University of Michigan) Online Value Function Improvement 17 / 20

http://bazald.com
http://www.umich.edu


Problems We’re Looking At—Part 3

Problem 6: Complexities

Environmental:
Environmental stochasticity
Propagation delays / Mixing time
Partial observability
State aliasing

Keeping the value function small for
savings in computation time and
memory usage.
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Future Work

Other Environments

We wish to work more with additional environments:
Equilibrium Tasks: 2 and 4-dimensional versions of Cart Pole
Relational Domains: Blocks World
Future Work: The above, and additionally Liar’s Dice

We plan to
improve our refinement criterion,
add support for automatic feature selection, and
focus more on the tradeoffs between computational and
memory costs and learning efficiency.
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Nuggets and Coal

Nuggets and Coal

Nuggets:
We have an efficient codebase to experiment with.
We have demonstrated the efficacy of deep
hierarchical tile codings.
We have shown that altenative credit assignment strategies
have promise.
Work so far is consistent with the implementation of Soar-RL.

Coal:
Our current refinement/splitting criterion doesn’t work very well
in certain domains.
The most recent experiments are not being done in Soar.
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