
SVS Release + 
Relevant Info

Soar Workshop 2014

1

Aaron Mininger

6/19/14



Overview
2

� Provides a general framework for Soar to 
reason about continuous environments

� Environment state is represented as 3D scene 
graph

� Has working memory interface similar to 
EpMem and Smem
(S1 ^svs S3)

(S3 ^spatial-scene S4 ^command C3)



Typical Environment Setup
3

� Environment reports state with task-specific 
representation

� All possibly important relations are reported all 
the time

Environment Code

Scene

A B

C

table

Soar Agent

Input Link

Relations

on(C, B)

on(A, table)

clear(A)

clear(C)

(I2 ^on O1 ^on O2

^clear C1

^clear C2)

(O1 ^top C ^bot B)

(O2 ^top A ^bot table)

(C1 ^obj A)

(C2 ^obj C)

SML 
API



With SVS
4

� Environment reports state with task-agnostic 
language (Scene Graph Edit Language)

� Agent queries only relations of interest
� Relations fixed across environments

Environment 

Code

Scene

A B

C

table

Soar Agent

Filters

SGEL

Scene Graph

A B

C

table

SVS WM

on(A,B)

on(B,C)

clear(A)

(S1 ^svs S3)

(S3 ^command C3)

(C3 ^extract E2)

(E2 ^a A1 ^b B1

^type on

^result R7)

(A1 ^id A ^type node)

(B1 ^id B ^type node)

(R7 ^record R17)

(R17 ^params P1

^value f)

(P1 ^a A ^b B)



Scene Graph
5

� Organizes objects as tree of nodes
� Child nodes are a part of the parent 

node
� Group nodes
� Geometry nodes

� Each node as position, rotation, 
transform

� Copied to each substate

world

carpole

wheel0 wheel1 wheel2 wheel3 chassis

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(S4 ^id world ^child C1 ^child C2)

(C1 ^id pole)

(C2 ^id car ^child C3 ^child C4

^child C5 ^child C6 ^child C7)

(C3 ^id wheel0)

(C4 ^id wheel1)

(C5 ^id wheel2)

(C6 ^id wheel3)

(C7 ^id chassis)



SML Interface
6

� SML environment updates SVS scene graph 
once per decision cycle via 
Agent::SendSVSInput

� Commands are text strings in the Scene Graph 
Edit Language

Input
Phase

Soar Agent

Scene 
Graph

Environment

Input Event Callback

A B

C

table

SGEL

1. Update Environment
2. Generate SGEL
3. Call SendSVSInput



SVS Viewer
7

� Displays scene 
graph contents

� Separate program 
that SVS 
communicates with 
via TCP sockets

� Run program
svs_viewer -s PORT

� Tell SVS to connect
svs connect_viewer PORT



Filters
8

� Transforms continuous information from scene 
graph into symbolic information in working memory
� Implements spatial relations, among other things

� Can be combined into pipeline
� Caches results and avoids recomputation when 

possible

Filter

Inputs Output

arg1

arg2

Filter

Filter
Extract 

Command 

(WM)



Working Memory Interface
9

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^extract E2)

(E2 ^a A1 ^b B1 ^type intersect)

(A1 ^id b1 ^type node)

(B1 ^id b2 ^type node)

intersect

node

node E
xtract 

C
om

m
and 

R
esult

S
cene 

G
raph

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^extract E2)

(E2 ^a A1 ^b B1 ^type intersect ^result R7

^status success)

(A1 ^id b1 ^type node ^status success)

(B1 ^id b2 ^type node ^status success)

(R7 ^record R17)

(R17 ^params P1 ^value f)

(P1 ^a b1 ^b b2)



Multiple Inputs to Filters
10

� Sometimes you want to run a filter on many objects
� Example: Does X intersect anything?
� It’s annoying and inefficient to make a filter for every pair of 

objects
� Filters can take multiple objects as inputs and outputs
� Different combination methods:

� Cartesian product (most common)
� Grouped
� Flattened

intersect

A B

C D E

f(A,C) f(A,D) f(A,E) f(B,C) f(B,D) f(B,E)



Some Built-in Filters
11

Filter Parameters Type Output type

node id map node

all_nodes none special node

[xyz]-greater-than a, b map boolean

[xyz]-less-than a, b map boolean

[xyz]-aligned-than a, b map boolean

on-top a, b map boolean

intersect a, b map boolean

distance a, b map float

closest a, b rank node

smaller-than a, b map boolean



Commands
12

� Agent issues SVS commands via command link

� “add_node”, “property” commands performed on 
substate scene graph copies allows for look-ahead 
search

extract Show the results of filter pipelines in working memory

add_node Add a new node (generated by filter pipeline) into the scene 

graph

property Change the position, rotation, scaling of existing objects

project Find position that satisfies spatial relation to an object



Release Info
13

� Upcoming release of Soar 9.4 by August 1
� Includes an addition to the Soar Manual 
� New Soar Tutorial

SVS is Coming!



Conclusion

Nuggets

� Filter pipelines are 
expressive and 
general

� Works on all OSes

� Doesn’t add any 
library dependencies 
to Soar

� Used extensively in 
the Rosie project

Coal

� Missing some 
functionality from 
old SVS

� Trades performance 
for simplicity

14



Filter Subclasses
15

map_filter

(dist, intersect)

A B

C D E

f(A,C)

reduce_filter

(colinear)

A B

C D E

rank_filter

(min, closest)

A B

C D E

f(AC,AD,AE,BC,BD,BE)

f(A,D) f(A,E) f(B,C) f(B,D) f(B,E)

argmax

�
�(�)



Credits
16

� SVS theory was developed by Sam 
Wintermute
� Wintermute, S. Imagery in Cognitive Architecture: 

Representation and Control at Multiple Levels of Abstraction. 
Cognitive Systems Research, 19-20,1-29.

� Soar Visual Imagery (SVI) was developed by 
Scott Lathrop
� Lathrop, S.D., and Laird, J.E. (2007). Towards Incorporating 

Visual Imagery into a Cognitive Architecture. Proceedings of the 
Eighth International Conference on Cognitive Modeling. Ann 
Arbor, MI. 



Writing a New Filter
17

� Write new class inheriting from an existing filter 
subclass (probably typed_map_filter)

� Register the new filter with the filter_table
� Recompile Soar
class custom_filter : public typed_map_filter<bool>

{

public:

custom_filter(Symbol *root, soar_interface *si, filter_input *input, scene *scn)

: typed_map_filter<bool>(root, si, input) // call superclass constructor

{}

bool compute(const filter_params *params, bool adding, bool &out, bool &changed)

{

// do your computation here

};

};



Scene Graph Edit Language
18

� a NAME TYPE PARENT [GEOMETRY] [TRANSFORM]

Add object to the scene graph

� d NAME

Delete object from scene graph

� c NAME [GEOMETRY] [TRANSFORM]

Change object geometry and/or transform

� p NAME PROPERTY VALUE

Set custom property

� Geometries
� Ball: b RADIUS

� Convex polyhedron: v X1 Y1 Z1 X2 Y2 Z2 ...

� Transforms

� [p X Y Z] [r X Y Z] [s X Y Z]


