

THE UNIVERSITY OF ADELAIDE AUSTRALIA

Realising Soar Long-Term Memory in Hardware

- 1. A Hardware Semantic Cache Muhammad Usman Khan
- 2. Long-term Memory using Memristors Peng Wang

A Hardware Semantic Cache

Muhammad Usman Khan

We are building hardware for Soar. Why start with semantic memory?

Soar's semantic memory was designed for efficiency

- simple, consistent, well-defined data structure
- small set of efficient retrieval modes
- we don't need to build an SQL server
- Requirements suit hardware
 - fine grained parallelism
 - Iots of transistors
 - Imited switching activity ⇒ low power
- Opportunity to support new features
 - Base-level activation
 - Spreading activation
- A stepping-stone to episodic memory

Soar semantic memory refresher

Semantic memory objects consist of one or more working memory elements (WMEs):

{Long Term Identifier (LTI), Attribute, Value}

A cue-based retrieval specifies WMEs to match

- Exact match of attribute and value
 Exact match of an LTI value
 Exact match attribute, but with any value
- Where multiple objects match, the one with highest activation is retrieved
- A cue can be modified with the LTIs of objects that must not match – so you can iterate over objects that match a cue

Stores and retrievals send or receive an object and its immediate augmentations (WMEs)

Requirements

Scalable to very large knowledge bases

- for general agents
- persist for long periods

Low latency

- real time reactivity
- deeper search, richer knowledge representation

New features

- base-level activation
- spreading activation
- parallel with decision cycle

Our Answer: Hierarchy and Virtual Memory

We know how to make large, scalable, high-performance memory systems: memory hierarchy and virtual memory.

Why not just use the memory hierarchy of a conventional computer?

Differences between semantic and conventional computer memory are opportunities for optimisation.

Soar semantic memory uses:

- Cue-based retrieval
- Multiple cues
- Multiple matches to a cue
- Activation
 - explicit requirement to return the object with the highest activation
 - a good match with hierarchical memory temporal locality: expected due to context spatial locality: (adjacent LTIs) may occur
- Spreading activation
 - can exploit the spatial locality explicit in the data structure

Semantic memory system organisation

First step: semantic cache

Semantic cache microarchitecture RCAM

Benefits of this structure

Deals neatly with variable-sized objects

- Any WME can occupy any row in memory
- No problems with fragmentation

Parallel cue-based search

- Each extra cue requires only one extra memory clock cycle
- Leverages conventional CAM

The RCAM is useful for other Soar hardware

- Many different operations can be performed using the selection scheme
- A selection stack can be added for nested iterations
- Value comparisons (e.g. >=0, <0, =0) are possible for working memory operations

Cue-based retrieval example

- 1. Select all used rows that match the first cue
- 2. For each additional cue: deselect all rows that do not match the cue
- 3. Read the LTI of the first selected row
- 4. Deselect all rows and then select all rows that match the LTI
 - While there are rows selected: read the first selected row and deselect this row

Implementation results

Xilinx Virtex 4 XC4SX55

- 32-bit PCI interface to PC
- 20ns memory clock cycle time
- 20us latency for a cue-based retrieval (mainly bus latency!)
- c.f. 189us for 400MB SQL semantic memory¹
- but a small FPGA 32 WMEs only

Improvements

- XC7V2000T FPGA has capacity for 4096 WMEs Memory latency would still be hidden behind bus latency
- Expect much greater density from an ASIC (e.g. CAMs with capacity for 100k WMEs are available²)
- 64-bit PCIe would improve latency
- **1**. Derbinsky, Laird and Smith, "Towards Efficiently Supporting Large Symbolic Declarative Memories," *10th ICCM*, 2010.
- 2. e.g. Renesas 20Mbit Standard TCAM (R8A20410BG)

Long-term Memory using Memristors

Peng Wang

What is a Memristor?

- Typical structure: metal-oxidemetal
- Demonstrated cell area: 4F² vs 12F² (DRAM main memory)
- When a current is applied, it changes its resistance as the doped region shrinks or expands
- The change to resistance persists for over 10 years – useful as a non-volatile memory element

Memristor

Digital

 High resistance & low resistance to represent binary values

Analog

- Theoretically, an ideal memristor's resistance has a linear relationship with the charge that has passed through it
- In analog applications, we can control the resistance by controlling the current and hence the charge

Figure 1: Memristor's analog properties

Why use Memristors for long-term memory?

High density

- We can pack a great many memristors on a chip
- Unlike transistors, you can stack many layers of memristors on a chip
- The layers of memristors can be built on top of a bottom layer of CMOS transistors

Low power & high speed

	Feature	Read	Write	Retention	Write	Reading
	$\operatorname{size}(F)$	time	time	time	cycle	voltage
memristor	5nm	$< 50 \mathrm{ns}$	0.3ns	> 10 years	10^{12}	0.15V
DRAM	36nm	< 10ns	< 10ns	64ms	$> 10^{16}$	1.8V
FLASH	22nm	$0.1\mathrm{ms}$	0.1ms	10 years	10^{4}	1.8V

Source: ITRS, "International Tecnology Roadmap for Semiconductors," 2011.

What does our proposed long-term memory look like?

LTI	Attribute	Value	Activation
	Ao		
	A1		
	element 2		A2
	An-1		

Content addressable memory (CAM) for storage & parallel search

 Activation circuits for each memory element

Activation

Base-level activation provides a way to reflect the relevance of information in memory

$$B = \ln \sum_{j=1}^{n} t_j^{-d}$$

B is computationally complex to maintain and severely affects real-time performance in the current realization of Soar (Soar Manual)

We propose dedicated hardware to maintain activation

A memristor based analog approach

- Spice simulation based on a memristor model extracted from fabricated memristors in publications
- Using voltage pulses to control conductance level hence activation
 - Pulse polarity
 - Pulse width
 - Pulse height
- Low conductance for inactive rows to reduce power dissipation

Activation circuits using memristors

The target

22 of 14

Achieved memristor activation

Figure 3: Memristor based activation with access period of 2ms

Differences

- The activation function achieved using memristors reflects frequency and recency of memory access
 - Frequency increases with accesses
 - Recency decays when it's not accessed
- It is not the original base level activation function
 - It increases and decays at different rates

Read operation

Find the maximum activation

- Voltage racing using RC circuits
- Compares all activation level in parallel

Summary

- We are designing memristive long-term memory for Soar
 - Memristor based content addressable memory
 - Memristor based activation circuits
- Significance
 - Quick search
 - Hardware based activation
 - Scalable to large, low power memories
- Further work
 - Evaluate area, power and latency of the activation circuit
 - Evaluate the accuracy and resolution of the circuit that finds the maximum activation
 - Characterize the activation function and evaluate its effectiveness for memory retrieval tasks
 - Memristive CAM

QUESTIONS?