

Street: A Hardware Production Engine for Soar

Dr. Braden Phillips

> Mostafa Numan

Jesse Frost

Soar, Production Systems

 Working Memory Encoded as WMEs – which can be represented in a graph
 Productions test for subsets of WM that match a specified pattern

sp {
 (state <s> ^name water-jug)
 (<s> ^jug <j>)
 (<j> ^contents <c>)
 (<j> ^volume <v>)
 ->
 (<j> ^empty (- <v> <c>))
}

Soar, Production Systems

How do you find instantiations in working memory?

Brute force: search every subset all the time

Rete: track changes to rule satisfaction

Rete

Rete exploits temporal redundancy

Stores candidate subsets of working memory

Tracks changes to these subsets over time

Forgy, Charles L. On the efficient implementation of production systems. Carnegie-Mellon University, 1979.

Treat

Treat is a variation of Rete originally for parallel architectures

Information in 'conflict set' of current instantiations and the beta memories is redundant

Does not maintain partial joins, just recalculates the information as its needed

Miranker, Daniel P. TREAT: A Better Match Algorithm for Al Production Systems. University of Texas at Austin, 1987.

Parallelism

- We want a system that allows parallelism at multiple levels
- General Purpose
 Architectures have
 bottlenecks

Parallelism

- A hardware platform should scalable at all levels – need a flat uniform architecture
- Modern Technology makes custom architectures accessible

- Street the name might be from 'Soar-Treat'
- Not really either
- A hardware platform for executing a parallel production language directly
- Hardware blocks perform the match-act cycle directly (not general purpose processors running a production interpreter)

Use ideas from Rete/Treat

Subsets of working memory kept in specialised CAMs

Production Matcher

- Subsets of working memory stored in collections of CAMs
- CAMs designed for single cycle execution of the operations we need
- Each rule is assigned one CAM for each condition element

Broadcast Network

- Broadcasts WM changes and synchronises production matchers
- Small broadcasters can be built from FIFO registers
- Gives the architecture a twosection design, one containing matchers and one containing the broadcaster.

Network-on-Chip

- Network-on-Chip for large systems
- Network definition can be reconfigured dynamically
- Broadcast Network is a potential bottleneck

- Work in progress
- Sorry, no 'Soar-on-a-Chip' just yet
- Preliminary results suggest we could fit several hundred productions on a large commercial FPGA
- Working on proof-of-concept
- Synchronisation and some more complex behaviours for Soar require more rules than the same agent in Soar
- Broadcast Network needs analysis

Vision

- Application Specific Device Similar to existing FPGA devices but with CAM blocks rather that conventional LUTs
- Very fast cycle times orders of magnitude faster than software -
- As many components of Soar implemented in simple production language as possible RISC vs CISC
- A shift of the programming paradigm from serial rule firing to massively parallel rule firing

Questions

