Learning Hierarchical Goal-Oriented Tasks from Situated Interactive Instruction

Shiwali Mohan, John E. Laird

Computer Science and Engineering University of Michigan, Ann Arbor

June 18th, 2014

relational goal structure

hierarchical decomposition

characteristics

	,
--	---

relational goal structure

hierarchical decomposition

acquire

- what?
- how?
- when?

2

characteristics

relational goal structure

hierarchical decomposition

desiderata

- multi-task learning
- assisted transfer
- fast generalization
- distributed initiative

acquire

- what?
- how?
- when?

characteristics

hierarchical decomposition

desiderata

- multi-task learning
- assisted transfer
- fast generalization
- distributed initiative

acquire

- what?
- how?
- when?

approach

- composable, hierarchical representations
- knowledge-rich machine learning EBL
- demo

characteristics

relational goal structure

hierarchical decomposition

desiderata

- multi-task learning
- assisted transfer
- fast generalization
- distributed initiative

acquire

- what?
- how?
- when?

approach

- soar state stack
 + operators
- chunking
 + selection
- demo

Task Representation

For the task store:

What?	 parameters Store the green cylinder. store([o], pantry, in([o],pantry))
	 subtasks store: open, move [pick-up, put-down], close
	 goal in(02,pantry) <pre></pre>
How?	 policy if [state,task] then execute([subtask])
	 model if [state,task] then [next-state]
When?	 availability if [state] then available(store)
	 termination if [state] then terminate(store)

Interaction trace Instructor: Store the green rectangle.

Interaction trace Instructor: Store the green rectangle.

Interaction trace Instructor: Store the green rectangle.

take?

Interaction trace Instructor: Store the green

rectangle. Agent: What is the goal of the action?

Instructor: The goal is the green rectangle in the pantry and the pantry closed.

Agent: Which action should I take?

Instructor: Open the pantry.

Interaction trace

Instructor: Store the green rectangle.

Agent: What is the goal of the action?

Instructor: The goal is the green rectangle in the pantry and the pantry closed.

Agent: Which action should I take?

Instructor: Open the pantry.

Agent: Which action should I take?

Interaction trace

Instructor: Store the green rectangle.

Agent: What is the goal of the action?

Instructor: The goal is the green rectangle in the pantry and the pantry closed.

Agent: Which action should I take?

Instructor: Open the pantry.

Agent: Which action should I take?

Instructor: Place the object in the pantry.

Interaction trace

Instructor: Store the green rectangle.

Agent: What is the goal of the action?

Instructor: The goal is the green rectangle in the pantry and the pantry closed.

Agent: Which action should I take?

Instructor: Open the pantry.

Agent: Which action should I take?

Instructor: Place the object in the pantry.

Agent: OK.

Interaction trace

Instructor: Store the green rectangle.

Agent: What is the goal of the action?

Instructor: The goal is the green rectangle in the pantry and the pantry closed.

Agent: Which action should I take?

Instructor: Open the pantry.

Agent: Which action should I take?

Instructor: Place the object in the pantry.

Agent: OK.

Agent: explores action space

Interaction trace

Instructor: Store the green rectangle.

Agent: What is the goal of the action?

Instructor: The goal is the green rectangle in the pantry and the pantry closed.

Agent: Which action should I take?

Instructor: Open the pantry.

Agent: Which action should I take?

Instructor: Place the object in the pantry.

Agent: OK.

Agent: explores action

space

Agent: closes the pantry

Interaction trace

Instructor: Store the green rectangle.

Agent: What is the goal of the action?

Instructor: The goal is the green rectangle in the pantry and the pantry closed.

Agent: Which action should I take?

Instructor: Open the pantry.

Agent: Which action should I take?

Instructor: Place the object in the pantry.

Agent: OK.

Agent: explores action

space

Agent: closes the pantry

terminate store:

If store([x]) and IN([x],PANTRY) and CLOSED(PANTRY)

terminate store:

If store([x]) and IN([x],PANTRY) and CLOSED(PANTRY)

terminate store:

If store([x]) and IN([x],PANTRY) and CLOSED(PANTRY)

terminate store:

If store([x]) and IN([x],PANTRY) and CLOSED(PANTRY)

terminate store:

If store([x]) and IN([x],PANTRY) and CLOSED(PANTRY)

-->

terminate store[x]

select close:

If store([x]) and IN([x],PANTRY) and OPEN(PANTRY) -->

select close(PANTRY)

terminate store:

If store([x]) and IN([x],PANTRY) and CLOSED(PANTRY)

--->

terminate store[x]

select close:

If store([x]) and IN([x],PANTRY) and OPEN(PANTRY) -->

>

select close(PANTRY)

select place:

If store([x]) and -IN([x],PANTRY) and OPEN(PANTRY)

--> select place([x],IN,PANTRY)

terminate store: If store([x]) and IN([x],PANTRY) and CLOSED(PANTRY) --> terminate store[x]

select close: If store([x]) and IN([x],PANTRY) and OPEN(PANTRY) --> select close(PANTRY) select place:

If store([x]) and -IN([x],PANTRY) and OPEN(PANTRY)

--> select place([x],IN,PANTRY)

select open:

If store([x]) and -IN([x],PANTRY) and CLOSED(PANTRY) --> select open(PANTRY)

terminate store: If store([x]) and IN([x],PANTRY) and

CLOSED (PANTRY)

terminate store[x]

select close:

If store([x]) and IN([x],PANTRY) and OPEN(PANTRY)

select close (PANTRY)

select place:
If store([x]) and
-IN([x],PANTRY) and
OPEN(PANTRY)

--> select place([x],IN,PANTRY)

select open:

If store([x]) and -IN([x], PANTRY) and CLOSED(PANTRY)

select open (PANTRY)

available store: If -IN([x],PANTRY) or OPEN(PANTRY)

available store([x])

--->

Multi-task Learning

```
pick-up & put-down:
place([x],[rel],[y]), move([x],[y]), discard([x]), store([x])
functional:
cook([x]), serve([x])
organizational:
stack-3([x],[y],[z]), stack-4([x],[y],[z],[w])
```

Learns general representations of tasks from few (~2-3) instances

Learns general representations of tasks from few (~2-3) instances

abstraction

on (purple object, table)

Learns general representations of tasks from few (~2-3) instances

abstraction

on (purple object, table)

predicate selection

select open:

If store(01) and -IN(01,PANTRY) and CLOSED(PANTRY) and GLOSED(STOVE) and OFF(STOVE) and -ON(02,STOVE) and ... -> select open(PANTRY)

Learns general representations of tasks from few (~2-3) instances

abstraction

on (purple object, table)

causal analysis

predicate selection

select open:

If store(01) and -IN(01,PANTRY) and CLOSED(PANTRY) and GLOSED(STOVE) and OFF(STOVE) and -ON(02,STOVE) and ... -> select open(PANTRY)

Learns general representations of tasks from few (~2-3) instances

abstraction

on (purple object, table)

causal analysis

predicate selection

select open:

If store(01) and -IN(01,PANTRY) and CLOSED(PANTRY) and CLOSED(STOVE) and OFF(STOVE) and -ON(02,STOVE) and ... -> select open(PANTRY)

variablization

Store the green rectangle.

The goal is the <u>green rectangle</u> in the pantry and the pantry is closed. Open the pantry.

Move the green rectangle to the pantry.

•••

Transfer

Exploits the common policy space for instruction-aided transfer.

Distributed Initiative

Integrates agent-driven exploration and instruction-guided exploitation

Learning the task store.

Distributed Initiative

Integrates agent-driven exploration and instruction-guided exploitation

Learning the task store.

Nuggets and Coal

Nuggets

- composable, hierarchical, transferable representation
- multi-task learning
- fast generalization
- distributed initiative of learning
- uses several Soar mechanisms
- Rosie talks!

Coal

- only achievement tasks
- not completely robust to instruction errors
- HRI evaluation