

Episodic memory (retrievals) as a CSP

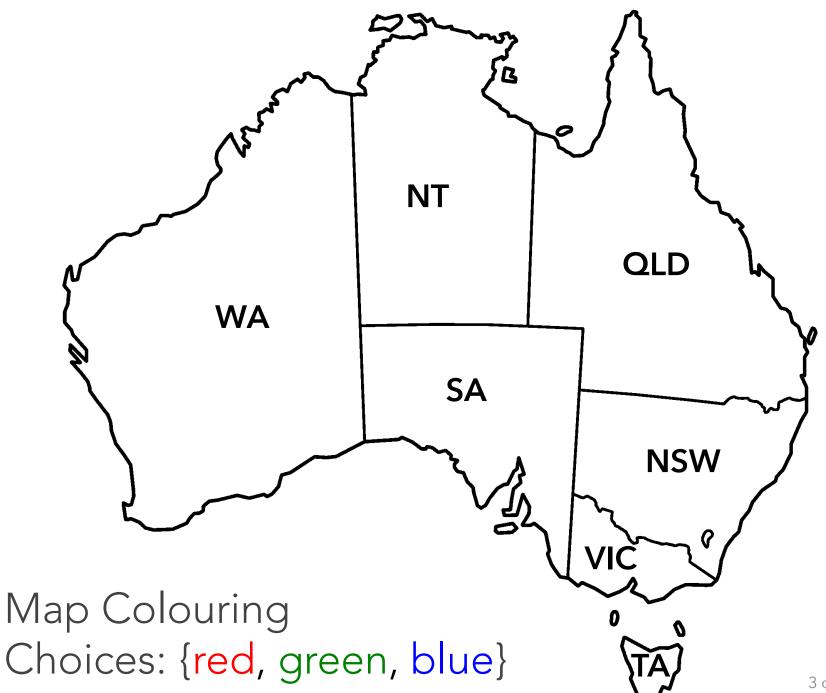
June 2014

Francis Li & Jesse Frost

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

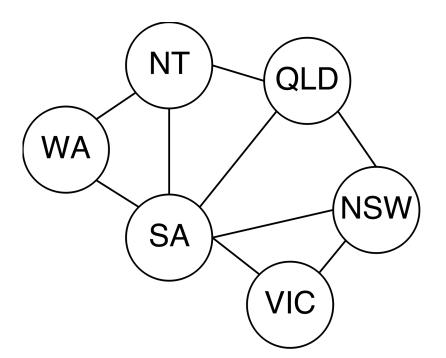
Motivation

- > Retrievals have poor time complexity
- > Where do we start?
- > Constraint Satisfaction Problems
 - Tap into vast research base
- > What works? What doesn't?
 - We can be very domain-specific
- > Provides easy way to model *any* changes



Primal Constraint Graph

- > Nodes are variables
- > Domain is {red, green, blue}
- Arcs are binary constraints
- > $C_{x,y} = (r,g),(r,b),(g,b),$ (g,r),(b,g),(b,r)
- > or $C_{x,y} = (x \neq y)$
- > We can exploit this structure

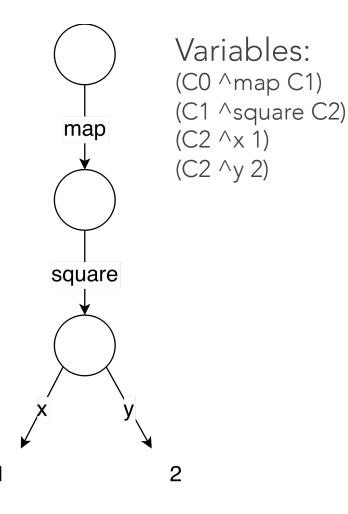


Stuff you probably know

> We have:

- A cue as a set of WMEs
- A set of every unique element that has ever appeared in working memory (the WMG)
- A list of intervals for each element representing the times they were active

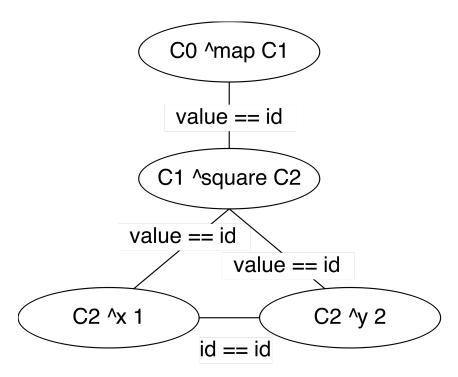
Epmem as a CSP



 Domain of each variable is every element in the WMG where the constant values match

- > Can further restrict for cues starting at root
- > For example:
 - Domain of (C2 ^x 1) is every value with attribute x and value 1

Epmem Primal Constraint Graph



- Any variables that share ids are constrained
- Also n-ary temporal constraint (not shown)
- > How do we solve this?

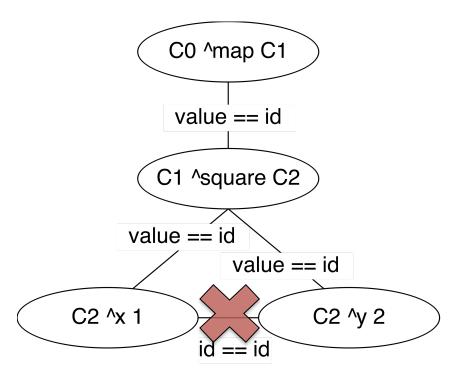
CSP solving techniques/heuristics

> Search (generating solutions)

- Backtracking (naïve, intelligent, look-ahead)
- > Inference (preprocessing/filtering)
 - Prune the search space
 - Create a tightened, but equivalent, problem
- > Variable ordering

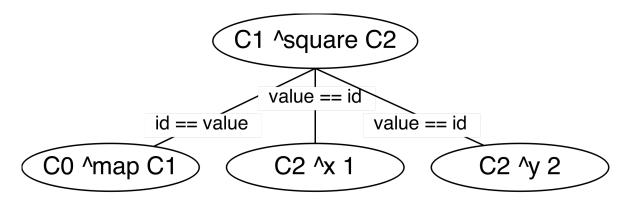
> Exploitation of constraint graph structure

Exploiting structure



- > We want width-1 tree structures
- Want to maximise graph degree centrality (we think)
- Must identify redundant constraints

Directional arc consistency (DAC)



- > When we backtrack, pick an ordering:
 - Instantiate parent (C1 ^square C2) first
 - Instantiate children after (heuristics define child order)
- > Before we backtrack:
 - Delete values in the domain of the parent which don't satisfy a constraint with all of its children

"Revise" example (id == value)

<u>Parent</u>

Domain[C1 ^square C2]

- (**O3** ^square O57)
- (**OO** square O247)
- (O3 ^square O75)
- (**O0** ^square O68)
- (**O3** ^square O34)

<u>Child</u> Domain[C0 ^map **C1**] - (O0 ^map **O3**)

Implemented using sets (of value ids in this case) O(k), k = max(|Dom|)

- > Delete unsupported values (where id \neq O3)
- > Repeat for all children
- > If domain becomes empty at any point -> no solutions
- > All values in the parent participate in a solution

Arc consistency

- > Backtrack-free for one solution
- > For all solutions, do DAC again (down the tree)
- > This establishes arc consistency (AC)
- > All values participate in a solution
- Better complexity than standard AC algorithms (controlled propagation)

Empirically (tanksoar: ~30000eps)

Cue	Metric	Naive	DAC	AC
map square	Node visits O(ek)	547	7	7
	Consistency checks O(1)	17512	103	3
	Set adds for revise O(1)		128	131
	Set membership checks for revise O(1)		408	536
	Sum of constant checks	17512	639	670
1 result	CPU time (ms)	32.7	.774	.706
map v square	Node visits O(ek)	515	35	35
	Consistency checks O(1)	16034	545	152
	Set adds for revise O(1)		64	96
	Set membership checks for revise O(1)		410	474
X	Sum of constant checks	16034	1019	722
16 results	CPU time (ms)	32.0	4.01	3.37

1. Process cue

- Remove redundant constraints
- Obtain highly branched tree under some ordering
- Dealing with cycles is a bit more complex

- 1. Process cue
 - Remove redundant constraints
 - Obtain highly branched tree under some ordering
 - Dealing with cycles is a bit more complex
- 2. Run DAC up the tree, then down

- 1. Process cue
 - Remove redundant constraints
 - Obtain highly branched tree under some ordering
 - Dealing with cycles is a bit more complex
- 2. Run DAC up the tree, then down
- Backtrack down the tree, maintaining AC

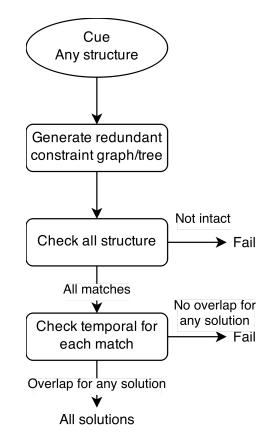
- 1. Process cue
 - Remove redundant constraints
 - Obtain highly branched tree under some ordering
 - Dealing with cycles is a bit more complex
- 2. Run DAC up the tree, then down
- 3. Backtrack down the tree, maintaining AC
- 4. Check temporal overlap by merging pairs of interval lists for each solution [O(nm)]

Comparison

Soar Implementation



This Implementation



Pluses

- Few (if any) restrictions on cue structure (can be disjoint, cyclic, non-rooted)
- > Easy to model extensions (C2 ^x >0)
- > Structure is most constrained
- No possibility of multiple complex graph matches
- > Retrieve all solutions
- > Parallelisation is fine-grained
- > Same principles for production matcher

Needs work

- > Retrieval is still unbounded
- > Poor when many solutions
- > Partial solutions not considered (yet)
- > More investigation needed
 - Variable ordering
 - Dealing with cycles
 - Look-ahead

BUT

- > The problem is defined.
- > All extensions can use the CSP formulation
- > We just tweak the techniques

Thank you

QUESTIONS?