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Motivation 

>  Retrievals have poor time complexity

>  Where do we start?

>  Constraint Satisfaction Problems


-  Tap into vast research base


>  What works? What doesn’t?

-  We can be very domain-specific


>  Provides easy way to model any changes
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Primal Constraint Graph 

>  Nodes are variables

>  Domain is {red, green, 

blue}

>  Arcs are binary 

constraints

>  Cx,y = (r,g),(r,b),(g,b), 


   

(g,r),(b,g),(b,r)

>  or Cx,y = (x ≠ y)

>  We can exploit this 

structure
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Stuff you probably know 

>  We have:

-  A cue as a set of WMEs

-  A set of every unique element that has ever 

appeared in working memory (the WMG)

-  A list of intervals for each element 

representing the times they were active
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Epmem as a CSP 

>  Domain of each 
variable is every 
element in the WMG 
where the constant 
values match


>  Can further restrict for 
cues starting at root


>  For example:

-  Domain of (C2 ^x 1) is 

every value with 
attribute x and value 1


Variables:

(C0 ^map C1)

(C1 ^square C2)

(C2 ^x 1)

(C2 ^y 2)
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Epmem Primal Constraint Graph 

>  Any variables that 
share ids are 
constrained


>  Also n-ary temporal 
constraint (not shown)


>  How do we solve this?
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CSP solving techniques/heuristics 

>  Search (generating solutions)

-  Backtracking (naïve, intelligent, look-ahead)


>  Inference (preprocessing/filtering)

-  Prune the search space

-  Create a tightened, but equivalent, problem


>  Variable ordering

>  Exploitation of constraint graph structure
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Exploiting structure 

>  We want width-1 tree 
structures


>  Want to maximise 
graph degree 
centrality (we think)


>  Must identify 
redundant constraints
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Directional arc consistency (DAC) 

>  When we backtrack, pick an ordering:

-  Instantiate parent (C1 ^square C2) first

-  Instantiate children after (heuristics define child order)


>  Before we backtrack:

-  Delete values in the domain of the parent which don’t 

satisfy a constraint with all of its children
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“Revise” example (id == value) 
Parent

Domain[C1 ^square C2]


-  (O3 ^square O57)

-  (O0 square O247)

-  (O3 ^square O75)

-  (O0 ^square O68)

-  (O3 ^square O34)


Child

Domain[C0 ^map C1]


-  (O0 ^map O3)


Implemented using sets (of 
value ids in this case)

O(k), k = max(|Dom|)




>  Delete unsupported values (where id ≠ O3)

>  Repeat for all children

>  If domain becomes empty at any point -> no solutions

>  All values in the parent participate in a solution
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Arc consistency 

>  Backtrack-free for one solution

>  For all solutions, do DAC again (down the 

tree)

>  This establishes arc consistency (AC)

>  All values participate in a solution

>  Better complexity than standard AC 

algorithms (controlled propagation)
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Empirically (tanksoar: ~30000eps)  
Cue Metric Naive DAC AC 
 
 
 
 
 
 
 

1 result 

Node visits O(ek) 547 7 7 
Consistency checks O(1) 17512 103 3 
Set adds for revise O(1) 128 131 
Set membership checks for revise O(1) 408 536 
Sum of constant checks 17512 639 670 
CPU time (ms) 32.7 .774 .706 

 
 
 
 
 
 
 
16 results 

Node visits O(ek) 515 35 35 
Consistency checks O(1) 16034 545 152 
Set adds for revise O(1) 64 96 
Set membership checks for revise O(1) 410 474 
Sum of constant checks 16034 1019 722 
CPU time (ms) 32.0 4.01 3.37 
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Generating solutions 

1.  Process cue 
-  Remove redundant constraints

-  Obtain highly branched tree under some 

ordering

-  Dealing with cycles is a bit more complex


15 of 22 



Generating solutions 

1.  Process cue

-  Remove redundant constraints

-  Obtain highly branched tree under some 

ordering

-  Dealing with cycles is a bit more complex


2.  Run DAC up the tree, then down 

16 of 22 



Generating solutions 

1.  Process cue

-  Remove redundant constraints

-  Obtain highly branched tree under some 

ordering

-  Dealing with cycles is a bit more complex


2.  Run DAC up the tree, then down

3.  Backtrack down the tree, maintaining 

AC 

17 of 22 



Generating solutions 

1.  Process cue

-  Remove redundant constraints

-  Obtain highly branched tree under some 

ordering

-  Dealing with cycles is a bit more complex


2.  Run DAC up the tree, then down

3.  Backtrack down the tree, maintaining AC

4.  Check temporal overlap by merging pairs 

of interval lists for each solution [O(nm)] 
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Comparison 
Soar Implementation
 This Implementation
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Pluses 

>  Few (if any) restrictions on cue structure (can 
be disjoint, cyclic, non-rooted)


>  Easy to model extensions (C2	
  ^x	
  >0) 

>  Structure is most constrained

>  No possibility of multiple complex graph 

matches

>  Retrieve all solutions

>  Parallelisation is fine-grained

>  Same principles for production matcher
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Needs work 
>  Retrieval is still unbounded

>  Poor when many solutions

>  Partial solutions not considered (yet)

>  More investigation needed


-  Variable ordering

-  Dealing with cycles

-  Look-ahead


BUT 
>  The problem is defined.

>  All extensions can use the CSP formulation

>  We just tweak the techniques
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QUESTIONS? 
Thank you



