
Episodic memory (retrievals)
as a CSP

June 2014

Francis Li & Jesse Frost

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

Motivation

>  Retrievals have poor time complexity

>  Where do we start?

>  Constraint Satisfaction Problems

-  Tap into vast research base

>  What works? What doesn’t?

-  We can be very domain-specific

>  Provides easy way to model any changes

2 of 22

WA

NT

SA

QLD

NSW

VIC

TA
Map Colouring

Choices: {red, green, blue}

3 of 22

WA

NT

SA

QLD

NSW

VIC

TA
A Solution

4 of 22

Primal Constraint Graph

>  Nodes are variables

>  Domain is {red, green,

blue}

>  Arcs are binary

constraints

>  Cx,y = (r,g),(r,b),(g,b),

(g,r),(b,g),(b,r)

>  or Cx,y = (x ≠ y)

>  We can exploit this

structure

5 of 22

Stuff you probably know

>  We have:

-  A cue as a set of WMEs

-  A set of every unique element that has ever

appeared in working memory (the WMG)

-  A list of intervals for each element

representing the times they were active

6 of 22

Epmem as a CSP

>  Domain of each
variable is every
element in the WMG
where the constant
values match

>  Can further restrict for
cues starting at root

>  For example:

-  Domain of (C2 ^x 1) is

every value with
attribute x and value 1

Variables:

(C0 ^map C1)

(C1 ^square C2)

(C2 ^x 1)

(C2 ^y 2)

7 of 22

Epmem Primal Constraint Graph

>  Any variables that
share ids are
constrained

>  Also n-ary temporal
constraint (not shown)

>  How do we solve this?

8 of 22

CSP solving techniques/heuristics

>  Search (generating solutions)

-  Backtracking (naïve, intelligent, look-ahead)

>  Inference (preprocessing/filtering)

-  Prune the search space

-  Create a tightened, but equivalent, problem

>  Variable ordering

>  Exploitation of constraint graph structure

9 of 22

Exploiting structure

>  We want width-1 tree
structures

>  Want to maximise
graph degree
centrality (we think)

>  Must identify
redundant constraints

10 of 22

Directional arc consistency (DAC)

>  When we backtrack, pick an ordering:

-  Instantiate parent (C1 ^square C2) first

-  Instantiate children after (heuristics define child order)

>  Before we backtrack:

-  Delete values in the domain of the parent which don’t

satisfy a constraint with all of its children

11 of 22

“Revise” example (id == value)
Parent

Domain[C1 ^square C2]

-  (O3 ^square O57)

-  (O0 square O247)

-  (O3 ^square O75)

-  (O0 ^square O68)

-  (O3 ^square O34)

Child

Domain[C0 ^map C1]

-  (O0 ^map O3)

Implemented using sets (of
value ids in this case)

O(k), k = max(|Dom|)

>  Delete unsupported values (where id ≠ O3)

>  Repeat for all children

>  If domain becomes empty at any point -> no solutions

>  All values in the parent participate in a solution

12 of 22

Arc consistency

>  Backtrack-free for one solution

>  For all solutions, do DAC again (down the

tree)

>  This establishes arc consistency (AC)

>  All values participate in a solution

>  Better complexity than standard AC

algorithms (controlled propagation)

13 of 22

Empirically (tanksoar: ~30000eps)
Cue Metric Naive DAC AC

1 result

Node visits O(ek) 547 7 7
Consistency checks O(1) 17512 103 3
Set adds for revise O(1) 128 131
Set membership checks for revise O(1) 408 536
Sum of constant checks 17512 639 670
CPU time (ms) 32.7 .774 .706

16 results

Node visits O(ek) 515 35 35
Consistency checks O(1) 16034 545 152
Set adds for revise O(1) 64 96
Set membership checks for revise O(1) 410 474
Sum of constant checks 16034 1019 722
CPU time (ms) 32.0 4.01 3.37

14 of 22

Generating solutions

1.  Process cue
-  Remove redundant constraints

-  Obtain highly branched tree under some

ordering

-  Dealing with cycles is a bit more complex

15 of 22

Generating solutions

1.  Process cue

-  Remove redundant constraints

-  Obtain highly branched tree under some

ordering

-  Dealing with cycles is a bit more complex

2.  Run DAC up the tree, then down

16 of 22

Generating solutions

1.  Process cue

-  Remove redundant constraints

-  Obtain highly branched tree under some

ordering

-  Dealing with cycles is a bit more complex

2.  Run DAC up the tree, then down

3.  Backtrack down the tree, maintaining

AC

17 of 22

Generating solutions

1.  Process cue

-  Remove redundant constraints

-  Obtain highly branched tree under some

ordering

-  Dealing with cycles is a bit more complex

2.  Run DAC up the tree, then down

3.  Backtrack down the tree, maintaining AC

4.  Check temporal overlap by merging pairs

of interval lists for each solution [O(nm)]
18 of 22

Comparison
Soar Implementation
 This Implementation

19 of 22

Pluses

>  Few (if any) restrictions on cue structure (can
be disjoint, cyclic, non-rooted)

>  Easy to model extensions (C2	
 ^x	
 >0)

>  Structure is most constrained

>  No possibility of multiple complex graph

matches

>  Retrieve all solutions

>  Parallelisation is fine-grained

>  Same principles for production matcher

20 of 22

Needs work
>  Retrieval is still unbounded

>  Poor when many solutions

>  Partial solutions not considered (yet)

>  More investigation needed

-  Variable ordering

-  Dealing with cycles

-  Look-ahead

BUT
>  The problem is defined.

>  All extensions can use the CSP formulation

>  We just tweak the techniques

21 of 22

QUESTIONS?
Thank you

