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Background

Why GQ(λ)?

It supports off-policy learning well and sometimes we care less
about agent performance during training than agent performance
after training.
GQ(λ) converges despite irreversible actions and other difficulties
approaching the training goal.

Imagine a robotic arm that is likely to knock over a tower of blocks
just before achieving the goal configuration.

It’s modern and the RL community thinks we should be using it.
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Background

On-Policy vs Off-Policy

From Sutton & Barto:

Mitchell Keith Bloch (University of Michigan) Implementing GQ(λ) for RL in Soar 2 / 13

http://bazald.com
http://www.umich.edu


Background

Temporal Difference Methods—Simple

A value function, Q(s, a), can explicitly store estimates of return

On-policy—Sarsa:

δ ← rt + γQt(s′, a′)− Qt(s, a)

Off-policy—Q-learning:

δ ← rt + γmax
a∗

Qt(s′, a∗)− Qt(s, a)

Then for both:
Qt+1(s, a)← Qt(s, a) + αδ
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Background

Temporal Difference Methods—Add Eligibility Traces

On-policy—Sarsa(λ):

δt ← rt + γQt(s′, a′)− Qt(s, a)

Off-policy—Q(λ):

δt ← rt + γmax
a∗

Qt(s′, a∗)− Qt(s, a))

Then for both, ∀s, ∀a:

et(s, a)← λet−1(s, a) + φ(s, a)

Qt+1(s, a)← Qt(s, a) + αδtet(s, a)
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Background

TD Methods—Add Linear Function Approximation

Using a weight vector to represent values increases generality

Q(s, a) =
n∑

i=1

θt(i)φs,a(i)

For both Sarsa(λ) and Q(λ), given δt, ∀i:

et(i)← λet−1(i) +
φs,a(i)∑n
i=1 φs,a(i)

θt+1(i)← θt(i) + αδtet(i)
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Background

Implementation of Function Approximation with
Eligibility Traces (Soar 9.4)

Store a list of eligible weights and currently active weights
Every step:

1 Loop through current weights to calculate δt and increase et

2 Loop through et, applying δt

3 Decay the list of eligible weights, et

4 If learning off-policy and choosing a non-greedy action, clear et
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GQ(λ)

Temporal Difference Methods—GQ(λ)

Big idea: guarantee convergence using a second weight vector

New requirements:
w(i) – a secondary set of learned weights
η – a secondary learning rate / step-size parameter
ρ – importance sampling ratio
I(s, a) – an interest function for hierarchical RL
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GQ(λ)

Temporal Difference Methods—GQ(λ)

w(i) – a secondary set of learned weights
η – a secondary learning rate / step-size parameter

Ordinary Q(λ) can diverge
Roughly, encourage θ(i) to change in a consistent direction
η affects the learning rate of w(i) only
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GQ(λ)

Temporal Difference Methods—GQ(λ)

ρt =
π(St,At)
b(St,At)

– importance sampling ratio

Q(λ) requires eligibility to be explicitly cleared before exploration
ρ provides a generalization of that clearing
Typically, ρt > 1 for greedy actions, so not a substitute for decay

∀i : et(i)← ρtet(i) – incomplete (see next slide)
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GQ(λ)

Temporal Difference Methods—GQ(λ)

I(s, a) – an interest function for hierarchical RL

1 for all values for flat RL
1 for initiating states in HRL
0 for non-initiating state in HRL
Focuses learning on the states in which decisions are made

∀i : et(i)← ρtet(i) + Iφt(i)
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GQ(λ)

Implementing GQ(λ) in Soar 9.5

What was necessary to add GQ(λ) to Soar?

Provide a user-controlled step-size-parameter

Add a second weight to each RL-Rule
Calculate ρ, I, and a couple more intermediate variables
Use ρ instead of explicitly clearing traces
Subtract off new GQ(λ) terms from current and next RL-rules

Mitchell Keith Bloch (University of Michigan) Implementing GQ(λ) for RL in Soar 11 / 13

http://bazald.com
http://www.umich.edu


GQ(λ) Results

Cliff Walking

50 runs of 50 episodes, for a total of 2500 episodes

Temporal Difference Method Total Steps Times Goal Reached
Sarsa(λ) 72764 2093
On-Policy GQ(λ) 72932 2083
Q(λ) 72787 2096
Off-Policy GQ(λ) 73124 2074
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Nuggets and Coal

Nuggets and Coal

Nuggets:
GQ(λ) is now available for Soar agents to use in 9.5.
Convergence should be guaranteed for stable environments.
It appears to work well.

Coal:
Should use a lower learning rate (Be aware!)
step-size-parameter is another parameter to tune
Computational cost is marginally higher.
Second set of weights lost when reloading rules, like e(i)

Performance is not guaranteed to dominate Sarsa(λ) or Q(λ).
The goal is a convergence guarantee.
This implementation could use additional testing and code review.
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