Implementing $GQ(\lambda)$ for RL in Soar

Mitchell Keith Bloch

University of Michigan 2260 Hayward Street Ann Arbor, MI. 48109-2121 bazald@umich.edu

June 4, 2015

Why $GQ(\lambda)$?

- It supports off-policy learning well and sometimes we care less about agent performance during training than agent performance after training.
- GQ(λ) converges despite irreversible actions and other difficulties approaching the training goal.
 - Imagine a robotic arm that is likely to knock over a tower of blocks just before achieving the goal configuration.
- It's modern and the RL community thinks we should be using it.

On-Policy vs Off-Policy

From Sutton & Barto:

Mitchell Keith Bloch (University of Michigan) Implementing $GQ(\lambda)$ for RL in Soar

Temporal Difference Methods—Simple

A value function, Q(s, a), can explicitly store estimates of return

On-policy—Sarsa:

$$\delta \leftarrow r_t + \gamma Q_t(s', a') - Q_t(s, a)$$

• Off-policy—Q-learning:

$$\delta \leftarrow r_t + \gamma \max_{a^*} Q_t(s', a^*) - Q_t(s, a)$$

Then for both:

$$Q_{t+1}(s,a) \leftarrow Q_t(s,a) + \alpha \delta$$

Temporal Difference Methods—Add Eligibility Traces

• On-policy—Sarsa(λ):

$$\delta_t \leftarrow r_t + \gamma Q_t(s',a') - Q_t(s,a)$$

• Off-policy— $Q(\lambda)$:

$$\delta_t \leftarrow r_t + \gamma \max_{a^*} Q_t(s', a^*) - Q_t(s, a))$$

Then for both, $\forall s, \forall a$:

$$e_t(s,a) \leftarrow \lambda e_{t-1}(s,a) + \phi(s,a)$$

 $Q_{t+1}(s,a) \leftarrow Q_t(s,a) + \alpha \delta_t e_t(s,a)$

TD Methods—Add Linear Function Approximation

Using a weight vector to represent values increases generality

$$Q(s,a) = \sum_{i=1}^{n} \theta_t(i)\phi_{s,a}(i)$$

For both Sarsa(λ) and Q(λ), given δ_t , $\forall i$:

$$e_{t}(i) \leftarrow \lambda e_{t-1}(i) + \frac{\phi_{s,a}(i)}{\sum_{i=1}^{n} \phi_{s,a}(i)}$$
$$\theta_{t+1}(i) \leftarrow \theta_{t}(i) + \alpha \delta_{t} e_{t}(i)$$

Implementation of Function Approximation with Eligibility Traces (Soar 9.4)

- Store a list of eligible weights and currently active weights
- Every step:
 - **1** Loop through current weights to calculate δ_t and increase e_t
 - **2** Loop through e_t , applying δ_t
 - **3** Decay the list of eligible weights, e_t
 - If learning off-policy and choosing a non-greedy action, clear e_t

Big idea: guarantee convergence using a second weight vector

New requirements:

- w(i) a secondary set of learned weights
- η a secondary learning rate / step-size parameter
- ρ importance sampling ratio
- *I*(*s*, *a*) an interest function for hierarchical RL

- w(i) a secondary set of learned weights
- η a secondary learning rate / step-size parameter
 - Ordinary $Q(\lambda)$ can diverge
 - Roughly, encourage $\theta(i)$ to change in a consistent direction
 - η affects the learning rate of w(i) only

$$ho_t = rac{\pi(S_t,A_t)}{b(S_t,A_t)}$$
 – importance sampling ratio

- Q(\u03c6) requires eligibility to be explicitly cleared before exploration
- *ρ* provides a generalization of that clearing
- Typically, $\rho_t > 1$ for greedy actions, so not a substitute for decay

 $\forall i : e_t(i) \leftarrow \rho_t e_t(i)$ – incomplete (see next slide)

- I(s, a) an interest function for hierarchical RL
 - I for all values for flat RL
 - 1 for initiating states in HRL
 - 0 for non-initiating state in HRL
 - Focuses learning on the states in which decisions are made

 $\forall i: e_t(i) \leftarrow \rho_t e_t(i) + I\phi_t(i)$

Implementing $GQ(\lambda)$ in Soar 9.5

What was necessary to add $GQ(\lambda)$ to Soar?

- Provide a user-controlled step-size-parameter
- Add a second weight to each RL-Rule
- Calculate ρ , *I*, and a couple more intermediate variables
- Use ρ instead of explicitly clearing traces
- Subtract off new GQ(λ) terms from current and next RL-rules

Cliff Walking

50 runs of 50 episodes, for a total of 2500 episodes

Temporal Difference Method	Total Steps	Times Goal Reached
$Sarsa(\lambda)$	72764	2093
On-Policy $GQ(\lambda)$	72932	2083
$Q(\lambda)$	72787	2096
Off-Policy $GQ(\lambda)$	73124	2074

Nuggets and Coal

Nuggets:

- $GQ(\lambda)$ is now available for Soar agents to use in 9.5.
- Convergence should be guaranteed for stable environments.
- It appears to work well.

Coal:

- Should use a lower learning rate (Be aware!)
- step-size-parameter is another parameter to tune
- Computational cost is marginally higher.
- Second set of weights lost when reloading rules, like e(i)
- Performance is not guaranteed to dominate Sarsa(λ) or Q(λ).
 The goal is a convergence guarantee.
- This implementation could use additional testing and code review.