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Why GQ()\)?

@ It supports off-policy learning well and sometimes we care less
about agent performance during training than agent performance
after training.

@ GQ(\) converges despite irreversible actions and other difficulties
approaching the training goal.

o Imagine a robotic arm that is likely to knock over a tower of blocks
just before achieving the goal configuration.

@ It's modern and the RL community thinks we should be using it.
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On-Policy vs Off-Policy

From Sutton & Barto:
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Background

Temporal Difference Methods—Simple

A value function, Q(s, a), can explicitly store estimates of return

@ On-policy—Sarsa:
§ 1 +70(s',d") — Os(s,a)
@ Off-policy—Q-learning:
8« r + wn}lng,(s’, a*) — Q:(s,a)

Then for both:
Orr1(s,a) < Oi(s,a) + ad
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Temporal Difference Methods—Add Eligibility Traces

@ On-policy—Sarsa(\):
O <=1 +7Q(s",d') — Qu(s,a)
@ Off-policy—Q(\):
0 = ri+ ymaxQy(s',a”) — Qi(s, a))
Then for both, Vs, Va:
e(s,a) < Ne,—1(s,a) + ¢(s,a)

Or1(s,a) < O(s,a) + ade (s, a)
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TD Methods—Add Linear Function Approximation

Using a weight vector to represent values increases generality

Q(Sv a) = Z el(i)(z)s,a(i)
i=1
For both Sarsa()\) and Q()), given §,, Vi:

er(i) < Aer—1 (i) + _ Psali)

> im1 Ps,ali)
01 (i) < 0,(i) + adre, (i)
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Implementation of Function Approximation with
Eligibility Traces (Soar 9.4)

@ Store a list of eligible weights and currently active weights
@ Every step:

© Loop through current weights to calculate §, and increase e,

® Loop through e;, applying 4,

©® Decay the list of eligible weights, ¢,

@ If learning off-policy and choosing a non-greedy action, clear e;
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Temporal Difference Methods—GQ(\)

Big idea: guarantee convergence using a second weight vector

New requirements:
@ w(i) —a secondary set of learned weights
@ n — a secondary learning rate / step-size parameter
@ p — importance sampling ratio
@ I(s,a) — an interest function for hierarchical RL
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Temporal Difference Methods—GQ(\)

w(i) — a secondary set of learned weights
n — a secondary learning rate / step-size parameter

@ Ordinary Q(\) can diverge

@ Roughly, encourage 6(i) to change in a consistent direction
@ 7 affects the learning rate of w(i) only
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Temporal Difference Methods—GQ(\)

0r = ’;((;'j:)) — importance sampling ratio

@ Q(\) requires eligibility to be explicitly cleared before exploration
@ p provides a generalization of that clearing
@ Typically, p; > 1 for greedy actions, so not a substitute for decay

Vi : e(i) < pee(i) —incomplete (see next slide)
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Temporal Difference Methods—GQ(\)

I(s,a) — an interest function for hierarchical RL

@ 1 for all values for flat RL

@ 1 for initiating states in HRL

@ 0 for non-initiating state in HRL

@ Focuses learning on the states in which decisions are made

Vi e (i) < pres(i) + 1y (i)
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Implementing GQ()) in Soar 9.5

What was necessary to add GQ(\) to Soar?

@ Provide a user-controlled step-size-parameter

@ Add a second weight to each RL-Rule

@ Calculate p, I, and a couple more intermediate variables

@ Use p instead of explicitly clearing traces

@ Subtract off new GQ(\) terms from current and next RL-rules
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Cliff Walking

50 runs of 50 episodes, for a total of 2500 episodes

| Temporal Difference Method | Total Steps | Times Goal Reached |

Sarsa()) 72764 2093
On-Policy GQ()) 72932 2083
Q((N) 72787 2096
Off-Policy GQ()) 73124 2074
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Nuggets and Coal

Nuggets:
@ GQ()\) is now available for Soar agents to use in 9.5.
@ Convergence should be guaranteed for stable environments.
@ It appears to work well.
Coal:
@ Should use a lower learning rate (Be aware!)
@ step-size-parameter is another parameter to tune
@ Computational cost is marginally higher.
@ Second set of weights lost when reloading rules, like e(i)

@ Performance is not guaranteed to dominate Sarsa(\) or Q()).
The goal is a convergence guarantee.

@ This implementation could use additional testing and code review.
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