Relational Blocks World Experiments in Carli

Mitchell Keith Bloch

University of Michigan 2260 Hayward Street Ann Arbor, MI. 48109-2121 bazald@umich.edu

June 4, 2015

Mitchell Keith Bloch (University of Michigan) Relational Blocks World Experiments in Carli

What's offered:

A Soar-like execution cycle

What's offered:

• A Soar-like execution cycle

Meaning:

- 1 ^io.input-link
- elaboration cycle
- 3 numeric preferences (and implicit operator proposal)

4 decide

- impasses
- 6 act

What's offered:

- A Soar-like execution cycle
- Soar-RL-like reinforcement learning support
- Architectural support for efficiently creating more specific RL-rules over time – a generative model for a value function

What's missing or different:

- Manipulating WMEs from the RHS has not been tested yet
- Operators (as you know them) and impasses do not exist
- SMem, EpMem, and SVS do not exist

What's offered:

- A Soar-like execution cycle
- Soar-RL-like reinforcement learning support
- Architectural support for efficiently creating more specific RL-rules over time a generative model for a value function

What's missing or different:

- Manipulating WMEs from the RHS has not been tested yet
- Operators (as you know them) and impasses do not exist
- SMem, EpMem, and SVS do not exist

Reinforcement Learning, Part I of II

- Must learn how to act, given experience perceiving states, trying actions, and receiving rewards
- Explore with an ε-greedy exploration strategy
- At the most abstract:
 - $\pi(s, a)$ represents the target policy
 - $\phi(i)$ represents the set of possible features
 - θ(i) stores weights which sum to provide value estimates for different actions

Reinforcement Learning, Part II of II

- Learn using $Sarsa(\lambda)$, $Q(\lambda)$, or $GQ(\lambda)$
 - On-policy: Can maximize over the exploration policy
 - Off-policy: Or over the target-typically greedy-policy
- Actions can be compared using estimates of discounted return

$$\sum_{t=0}^{\infty} \texttt{discount_rate}^t \cdot \texttt{reward}_t$$

Reinforcement Learning

Temporal Difference Methods

Briefly:

- On-policy—Sarsa: $Q(s, a) \stackrel{\alpha}{\leftarrow} r + \gamma Q(s', a')$
- Off-policy—Q-learning: $Q(s, a) \stackrel{\alpha}{\leftarrow} r + \gamma \max_{a^*} Q(s', a^*)$
- Modern— $GQ(\lambda)$: More elaborate

Listen to my next talk!

Relational Reinforcement Learning

- Each state is described by a set of relations, such as (<stack> ^top <block>)
- Each feature in φ(i) represents a conjunction of any number of such relations
- Value function computation could dominate CPU time since variable bindings are expensive
- The Rete algorithm can be used
 - It was designed for expert system rules
 - Handles variable bindings very efficiently
 - CPU time proportional to changes in environment rather than the total size of the environment
 - Shares work between similar rules

Dynamic Specialization

- Given φ(i), θ(i), and other metadata, which features are most likely to improve the value function?
- Many approaches have been explored
- We've explored the following criteria:
 - Cumulative Absolute Temporal Difference Error
 - Policy –Maximal change in $\pi(s, a)$
 - Value Maximal change in $\theta(i)$

Typical Relational Blocks World

Typical state description visual

- No direct knowledge of the goal presented by the environment
- All knowledge comes from the reward function
- Only simple training goals possible for variable configurations
 - Place all blocks on the table
 - Place one specific block on one other block
 - Create a tower of a certain height

Blocks World

My Relational Blocks World

- Full representation of the goal presented by the environment
- Significantly more complex training goal
 - Must test more than one relation

Blocks World

A Carli Agent Rule – https://github.com/bazald/carli

```
sp {blocks-world*rl-fringe*s38
  :feature 3 split blocks-world*rl-fringe*s16
  (<s> ^blocks <blocks>)
  (<s> ^qoal <qoal>)
  :
                                   # Rule abbreviated
  -{(<goal> ^stack <goal-stack>)
    (<stack> ^matches <goal-stack>) }
  +{ (<goal> ^stack <goal-stack>)
    (<dest-stack> ^matches <goal-stack>) }
-->
  = 0.3290046905701842217
}
```

A Carli Agent

- Executes quickly, using a rete implementation for its value function
- Learns using the TD methods we described earlier
- Tackles the problem of feature selection
 - Which conditions to add to new RL-rules, i.e.
 +{(<goal> ^stack <goal-stack>)
 (<dest-stack> ^matches <goal-stack>)}
- Efficiently adds new rules to the rete using the chosen conditions

Blocks World

Results – Rete Scaling for a Value Function

Results – Scalability Discussion

Using a learned policy:

- Test scalability of the Rete when reasoning over complex relations
- The deoptimized Rete takes 100 seconds per move at 26 blocks
- The optimized Rete takes only 1 second per move at 26 blocks
 - 16 blocks is the cutoff for reasoning in 50 ms
 - With 10 blocks, 100 moves take half a second
- This is quite fast, and it's actually a degenerate, bad case for Rete
 - Multivalued block and stack attributes cause exponential explosions

Blocks World

Results – Flat / Non-Hierarchical

Results – Full Hierarchy

Results – Value Criterion

Results – Policy Criterion

Results – Learning Discussion

We test the learning ability of our system

- With only inadequate propositional features
- With only good relational features
- With a mix of both
- With only good relational features, all agents succeed quickly
- Propositional features distract the agents to a degree, but all recover
 - The flat agent handles the distractors the least well

Nuggets and Coal

Nuggets:

- Rete enables RRL agents to solve tasks quickly
- Dynamically specializing a value function has a neglible CPU cost, and the resulting suboptimality in the policy is temporary
- We have developed and implemented a rule grammar to specify dynamically specializable relational reinforcement learning agents

Coal:

- Could still improve our feature selection criteria
- Haven't yet implemented sophisticated restructuring of the value function
- A higher order grammar for adding variables and new relations using these variables would be helpful
- Not a part of Soar