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Background

Carli 6= Soar – https://github.com/bazald/carli

What’s offered:
A Soar-like execution cycle
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Background

Carli 6= Soar – https://github.com/bazald/carli

What’s offered:
A Soar-like execution cycle

Meaning:
1 ˆio.input-link

2 elaboration cycle
3 numeric preferences (and implicit operator proposal)
4 decide

impasses

5 act
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Background

Carli 6= Soar – https://github.com/bazald/carli

What’s offered:
A Soar-like execution cycle
Soar-RL-like reinforcement learning support
Architectural support for efficiently creating more specific RL-rules
over time – a generative model for a value function

What’s missing or different:
Manipulating WMEs from the RHS has not been tested yet
Operators (as you know them) and impasses do not exist
SMem, EpMem, and SVS do not exist
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Background Reinforcement Learning

Reinforcement Learning, Part I of II

Must learn how to act, given experience perceiving states, trying
actions, and receiving rewards
Explore with an ε-greedy exploration strategy
At the most abstract:

π(s, a) represents the target policy
φ(i) represents the set of possible features
θ(i) stores weights which sum to provide value estimates for
different actions
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Background Reinforcement Learning

Reinforcement Learning, Part II of II

Learn using Sarsa(λ), Q(λ), or GQ(λ)
On-policy: Can maximize over the exploration policy
Off-policy: Or over the target—typically greedy—policy

Actions can be compared using estimates of discounted return

∞∑
t=0

discount ratet · rewardt
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Background Reinforcement Learning

Temporal Difference Methods

Briefly:
On-policy—Sarsa: Q(s, a) α← r + γQ(s′, a′)

Off-policy—Q-learning: Q(s, a) α← r + γmax
a∗

Q(s′, a∗)

Modern—GQ(λ): More elaborate

Listen to my next talk!
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Background Reinforcement Learning

Relational Reinforcement Learning

Each state is described by a set of relations,
such as (<stack> ˆtop <block>)

Each feature in φ(i) represents a conjunction of any number of
such relations
Value function computation could dominate CPU time since
variable bindings are expensive
The Rete algorithm can be used

It was designed for expert system rules
Handles variable bindings very efficiently
CPU time proportional to changes in environment rather than the
total size of the environment
Shares work between similar rules
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Background Reinforcement Learning

Dynamic Specialization

Given φ(i), θ(i), and other metadata, which features are most
likely to improve the value function?
Many approaches have been explored
We’ve explored the following criteria:

Cumulative Absolute Temporal Difference Error
Policy –Maximal change in π(s, a)
Value – Maximal change in θ(i)
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Background Blocks World

Typical Relational Blocks World

Table

B

A C

D

E

Typical state description visual

No direct knowledge of the goal presented by the environment
All knowledge comes from the reward function
Only simple training goals possible for variable configurations

Place all blocks on the table
Place one specific block on one other block
Create a tower of a certain height
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Background Blocks World

My Relational Blocks World

Table

B

A C

D

E

Blocks

Table

B

A

C

D E

Goal
Complete state description visual

Full representation of the goal presented by the environment
Significantly more complex training goal

Must test more than one relation
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Background Blocks World

A Carli Agent Rule – https://github.com/bazald/carli

sp {blocks-world*rl-fringe*s38
:feature 3 split blocks-world*rl-fringe*s16
(<s> ˆblocks <blocks>)
(<s> ˆgoal <goal>)
... # Rule abbreviated
-{(<goal> ˆstack <goal-stack>)

(<stack> ˆmatches <goal-stack>)}
+{(<goal> ˆstack <goal-stack>)

(<dest-stack> ˆmatches <goal-stack>)}
-->
= 0.3290046905701842217

}
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Background Blocks World

A Carli Agent

Executes quickly, using a rete implementation for its value function
Learns using the TD methods we described earlier
Tackles the problem of feature selection

Which conditions to add to new RL-rules, i.e.
+{(<goal> ˆstack <goal-stack>)
(<dest-stack> ˆmatches <goal-stack>)}

Efficiently adds new rules to the rete using the chosen conditions
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Background Blocks World

Results – Rete Scaling for a Value Function
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Background Blocks World

Results – Scalability Discussion

Using a learned policy:
Test scalability of the Rete when reasoning over complex relations
The deoptimized Rete takes 100 seconds per move at 26 blocks
The optimized Rete takes only 1 second per move at 26 blocks

16 blocks is the cutoff for reasoning in 50 ms
With 10 blocks, 100 moves take half a second

This is quite fast, and it’s actually a degenerate, bad case for Rete
Multivalued block and stack attributes cause exponential explosions
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Background Blocks World

Results – Flat / Non-Hierarchical
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Background Blocks World

Results – Full Hierarchy
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Background Blocks World

Results – Value Criterion
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Background Blocks World

Results – Policy Criterion
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Rel Policy
Mixed Policy
Prop Policy
CPU: Rel Policy
CPU: Mixed Policy
CPU: Prop Policy
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Background Blocks World

Results – Learning Discussion

We test the learning ability of our system
With only inadequate propositional features
With only good relational features
With a mix of both

With only good relational features, all agents succeed quickly
Propositional features distract the agents to a degree, but all
recover

The flat agent handles the distractors the least well
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Nuggets and Coal

Nuggets and Coal

Nuggets:
Rete enables RRL agents to solve tasks quickly
Dynamically specializing a value function has a neglible CPU cost,
and the resulting suboptimality in the policy is temporary
We have developed and implemented a rule grammar to specify
dynamically specializable relational reinforcement learning agents

Coal:
Could still improve our feature selection criteria
Haven’t yet implemented sophisticated restructuring of the value
function
A higher order grammar for adding variables and new relations
using these variables would be helpful
Not a part of Soar

Mitchell Keith Bloch (University of Michigan) Relational Blocks World Experiments in Carli 18 / 18

http://bazald.com
http://www.umich.edu

	Background
	Reinforcement Learning
	Blocks World

	Nuggets and Coal

