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Carli £ Soar — https://github.com/bazald/carli

What'’s offered:
@ A Soar-like execution cycle
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Carli £ Soar — https://github.com/bazald/carli

What'’s offered:
@ A Soar-like execution cycle
Meaning:
©® io.input-link
@ eclaboration—cycle
® numeric preferences (and implicit operator proposal)
O decide
o impasses
@ act
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Carli £ Soar — https://github.com/bazald/carli

What'’s offered:
@ A Soar-like execution cycle
@ Soar-RL-like reinforcement learning support

@ Architectural support for efficiently creating more specific RL-rules
over time — a generative model for a value function

What’s missing or different:
@ Manipulating WMEs from the RHS has not been tested yet
@ Operators (as you know them) and impasses do not exist
@ SMem, EpMem, and SVS do not exist
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Background Reinforcement Learning

Reinforcement Learning, Part | of Il

@ Must learn how to act, given experience perceiving states, trying
actions, and receiving rewards

@ Explore with an e-greedy exploration strategy

@ At the most abstract:

o 7(s,a) represents the target policy

o ¢(i) represents the set of possible features

@ 6(i) stores weights which sum to provide value estimates for
different actions
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Background Reinforcement Learning

Reinforcement Learning, Part Il of Il

@ Learn using Sarsa()), Q(\), or GQ(N)
@ On-policy: Can maximize over the exploration policy
e Off-policy: Or over the target—typically greedy—policy

@ Actions can be compared using estimates of discounted return

o
g discount_rate!- reward;
=0
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Background Reinforcement Learning

Temporal Difference Methods

Briefly:
@ On-policy—Sarsa: Q(s,a) & r +~vQ(s', d')
e Off-policy—Q-learning: Q(s, a) <- r + ymaxQ(s', a*)
@ Modern—GQ(\): More elaborate

Listen to my next talk!
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Background Reinforcement Learning

Relational Reinforcement Learning

@ Each state is described by a set of relations,
such as (<stack> “top <block>)

@ Each feature in ¢(i) represents a conjunction of any number of
such relations

@ Value function computation could dominate CPU time since
variable bindings are expensive

@ The Rete algorithm can be used

o It was designed for expert system rules

e Handles variable bindings very efficiently

o CPU time proportional to changes in environment rather than the
total size of the environment

e Shares work between similar rules
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Background Reinforcement Learning

Dynamic Specialization

@ Given ¢(i), 6(i), and other metadata, which features are most
likely to improve the value function?

@ Many approaches have been explored

@ We've explored the following criteria:

e Cumulative Absolute Temporal Difference Error
e Policy -Maximal change in (s, a)
e Value — Maximal change in (i)
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Typical Relational Blocks World

ama

Table

Typical state description visual

@ No direct knowledge of the goal presented by the environment
@ All knowledge comes from the reward function

@ Only simple training goals possible for variable configurations

@ Place all blocks on the table
o Place one specific block on one other block
o Create a tower of a certain height
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My Relational Blocks World

00 B

Table Table

Blocks Goal
Complete state description visual

@ Full representation of the goal presented by the environment
@ Significantly more complex training goal
o Must test more than one relation
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A Carli Agent Rule — https://github.com/bazald/carli

sp {blocks-worldsrl-fringe*s38
:feature 3 split blocks-worldxrl-fringexslé6
(<s> “"blocks <blocks>)
(<s> "goal <goal>)

: # Rule abbreviated

{(<goal> “stack <goal-stack>)
(<stack> “matches <goal-stack>)}
+{(<goal> “stack <goal-stack>)
(<dest—-stack> "matches <goal—stack>)}
-——>

= 0.3290046905701842217
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A Carli Agent

@ Executes quickly, using a rete implementation for its value function

@ Learns using the TD methods we described earlier
@ Tackles the problem of feature selection

@ Which conditions to add to new RL-rules, i.e.
+{(<goal> “stack <goal-stack>)
(<dest-stack> “matches <goal-stack>)}

@ Efficiently adds new rules to the rete using the chosen conditions
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Results — Rete Scaling for a Value Function
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Results — Scalability Discussion

Using a learned policy:
@ Test scalability of the Rete when reasoning over complex relations
@ The deoptimized Rete takes 100 seconds per move at 26 blocks

@ The optimized Rete takes only 1 second per move at 26 blocks

@ 16 blocks is the cutoff for reasoning in 50 ms
o With 10 blocks, 100 moves take half a second

@ This is quite fast, and it's actually a degenerate, bad case for Rete
e Multivalued block and stack attributes cause exponential explosions
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Results — Flat / Non-Hierarchical
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Results — Full Hierarchy

Cumulative Reward / # Episodes
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Results — Value Criterion

Cumulative Reward / # Episodes
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Background

Results — Policy Criterion
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Results — Learning Discussion

@ We test the learning ability of our system
e With only inadequate propositional features
e With only good relational features
o With a mix of both
@ With only good relational features, all agents succeed quickly

@ Propositional features distract the agents to a degree, but all
recover

e The flat agent handles the distractors the least well
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Nuggets and Coal

Nuggets:
@ Rete enables RRL agents to solve tasks quickly

@ Dynamically specializing a value function has a neglible CPU cost,
and the resulting suboptimality in the policy is temporary

@ We have developed and implemented a rule grammar to specify
dynamically specializable relational reinforcement learning agents

Coal:
@ Could still improve our feature selection criteria

@ Haven'’t yet implemented sophisticated restructuring of the value
function

@ A higher order grammar for adding variables and new relations
using these variables would be helpful

@ Not a part of Soar
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