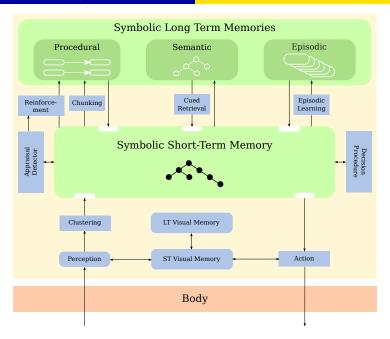
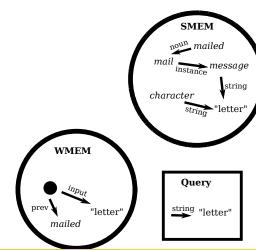
Spreading Activation in Soar: An Update


Steven Jones

Computer Science and Engineering, University of Michigan, Ann Arbor scijones@umich.edu

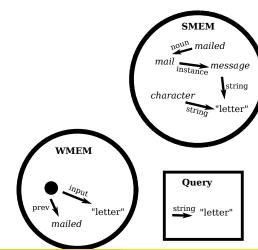
June 13, 2016

Overview

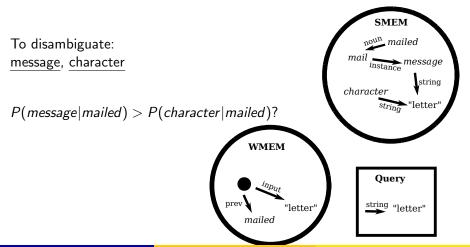

- 1 Problem: Ambiguous Contextualized Retrieval
- 2 Approach: Spreading Activation
 - The Naive Way
 - Improvements
- Secondary Evaluation

Ambiguous Cue-based Retrieval

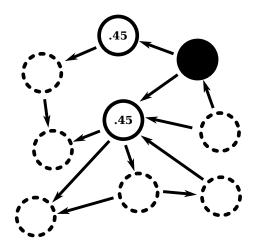
The postman[1] mailed[1] the letter[2] .

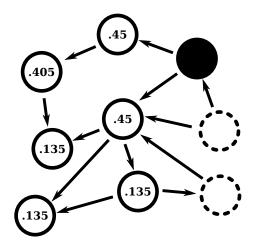

To disambiguate: message, character

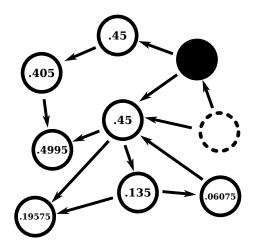
Ambiguous Cue-based Retrieval


The postman[1] mailed[1] the letter[2] .

To disambiguate:
message, character
What if we have more information?

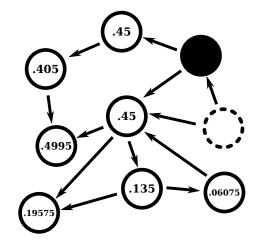

Ambiguous Cue-based Retrieval


The postman[1] mailed[1] the letter[2] .

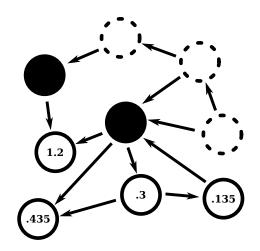


Approach: Spreading Activation

- 1 Problem: Ambiguous Contextualized Retrieval
- 2 Approach: Spreading Activation
 - The Naive Way
 - Improvements
- 3 Evaluation

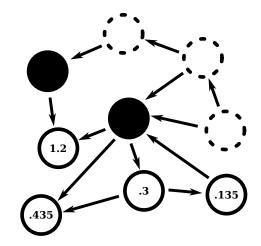


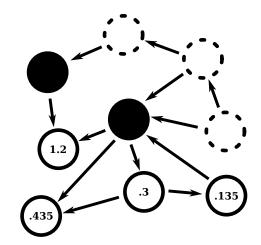




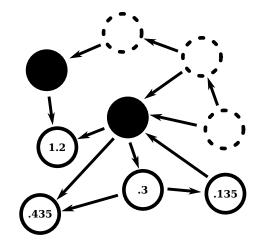
Properties

- Decays with distance from context.
- More connections to a node give higher value.

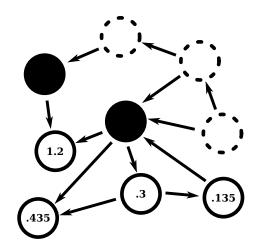



Problems

 Always recompute from scratch


Problems

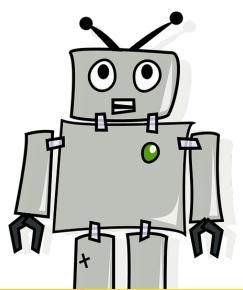
- Always recompute from scratch
- Won't reuse good values


Problems

- Always recompute from scratch
- Won't reuse good values
- Might not even need calculated values

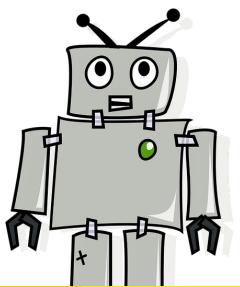
Problems

Wasted Computation

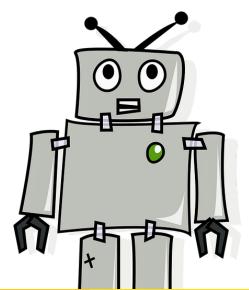

How to avoid wasteful computation during a task

- Only process changes
- Cache already-calculated spread
- Precalculate
- Defer processing until queries
- Don't process in unambiguous queries
- Only process spread for potential query results

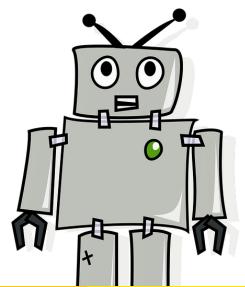
How to avoid wasteful computation during a task

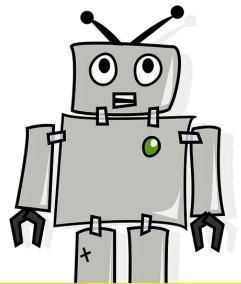

- Only process changes
- Cache already-calculated spread
- Precalculate
- Defer processing until queries
- Don't process in unambiguous queries
- Only process spread for potential query results

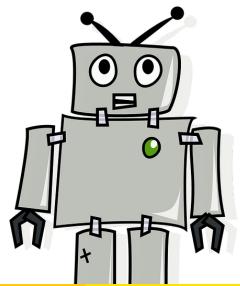
Bold improvements already exist in ACT-R.

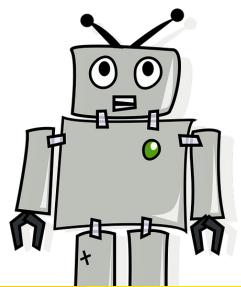


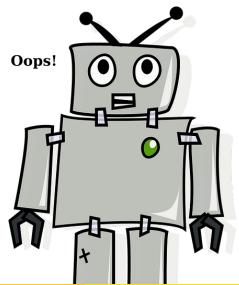
List for Context:

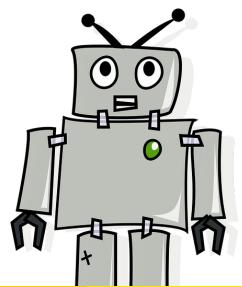

apple


- apple
- banana

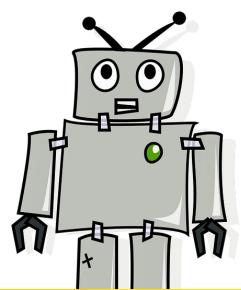

- apple
- banana
- watermelon

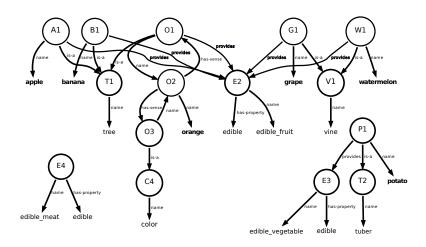

- apple
- banana
- watermelon
- orange


- apple
- banana
- watermelon
- orange
- grape


- apple
- banana
- watermelon
- orange
- grape
- potato

- apple
- banana
- watermelon
- orange
- grape
- potato


- apple
- banana
- watermelon
- orange
- grape



List for Context:

- apple
- banana
- watermelon
- orange
- grape

Then, ask questions (do queries).

Decision Cycle	LTI source
12345678	@A1 (apple)
2345678	@B1 (banana)
345678	@W1 (watermelon)
45678	@O2 (orange)
5678	@G1 (grape)
678	@P1 (potato)

Bold indicates spreading activation calculation.

Change-Only Processing

Decision Cycle	LTI source
12345678	@A1 (apple)
2345678	@B1 (banana)
345678	@W1 (watermelon)
45678	@O2 (orange)
5678	@G1 (grape)
678	@P1 (potato)

Change-Only Processing

Decision Cycle	LTI source
1 2345678	@A1 (apple)
2 345678	@B1 (banana)
3 45678	@W1 (watermelon)
4 5678	@O2 (orange)
5 678	@G1 (grape)
678	@P1 (potato)

Spread Caching

Suppose that at t=-3 and -5, the agent had already encountered apple and watermelon, respectively.

Decision Cycle	LTI source
1 2345678	@A1 (apple)
2 345678	@B1 (banana)
3 45678	@W1 (watermelon)
4 5678	@O2 (orange)
5 678	@G1 (grape)
678	@P1 (potato)

Spread Caching

Suppose that at t=-3 and -5, the agent had already encountered apple and watermelon, respectively.

Decision Cycle	LTI source
1 2345678	@A1 (apple)
2 345678	@B1 (banana)
3 45678	@W1 (watermelon)
4 5678	@O2 (orange)
5 678	@G1 (grape)
678	@P1 (potato)

Blue italics indicates reduced computation by caching.

Precalculation

Decision Cycle	LTI source
1 2345678	@A1 (apple)
2 345678	@B1 (banana)
3 45678	@W1 (watermelon)
4 5678	@O2 (orange)
5 678	@G1 (grape)
678	@P1 (potato)

Precalculation

Decision Cycle	LTI source	
1 2345678	@A1 (apple)	
2 345678	@B1 (banana)	
3 45678	@W1 (watermelon)	
4 5678	@O2 (orange)	
5 678	@G1 (grape)	
67 8	@P1 (potato)	

Query-Deferred Processing

Postpone the spreading calculations until the query (when they are needed).

Decision Cycle	LTI source
1 2345678	@A1 (apple)
2 345678	@B1 (banana)
<i>3</i> 45678	@W1 (watermelon)
4 5678	@O2 (orange)
5 678	@G1 (grape)
67 8	@P1 (potato)

Query-Deferred Processing

Postpone the spreading calculations until the query (when they are needed).

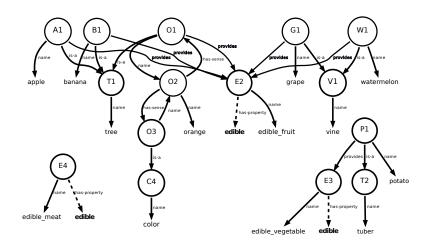
Decision Cycle	LTI source	
1234567 8	@A1 (apple)	
234567 8	@B1 (banana)	
34567 8	@W1 (watermelon)	
4567 8	@O2 (orange)	
567 8	@G1 (grape)	
678	@P1 (potato)	

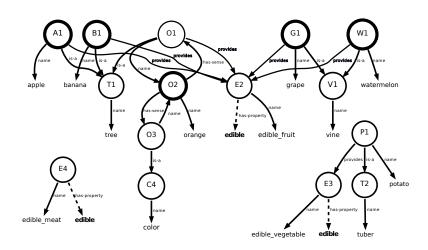
Cue:

Answer:

Decision Cycle	LTI source	
1234567 8	@A1 (apple)	
234567 8	@B1 (banana)	
34567 8	@W1 (watermelon)	
4567 8	@O2 (orange)	
567 8	@G1 (grape)	
678	@P1 (potato)	

Cue: ^capital-of "Michigan"


Answer: Lansing

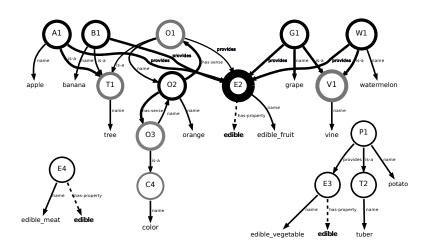

Decision Cycle	LTI source	
12345678	@A1 (apple)	
2345678	@B1 (banana)	
345678	@W1 (watermelon)	
45678	@O2 (orange)	
5678	@G1 (grape)	
678	@P1 (potato)	

Cue: ^has-property "edible"

Answer: Edible Fruit, Edible Vegetable, Edible Meat

Decision Cycle	LTI source	
1234567 8	@A1 (apple)	
234567 8	@B1 (banana)	
34567 8	@W1 (watermelon)	
4567 8	@O2 (orange)	
567 8	@G1 (grape)	
678	@P1 (potato)	

Cue: ^has-property "edible"


Answer: Edible Fruit, Edible Vegetable, Edible Meat Recipients of Spread: Edible Fruit, Tree, Color, Vine

Decision Cycle	LTI source	
1234567 <i>8</i>	@A1 (apple)	
234567 <i>8</i>	@B1 (banana)	
34567 <i>8</i>	@W1 (watermelon)	
4567 <i>8</i>	@O2 (orange)	
567 <i>8</i>	@G1 (grape)	
678	@P1 (potato)	

Cue: ^has-property "edible"

Answer: Edible Fruit, Edible Vegetable, Edible Meat Recipients of Spread: Edible Fruit, Tree, Color, Vine

Decision Cycle	LTI source	
1234567 <i>8</i>	@A1 (apple)	
234567 <i>8</i>	@B1 (banana)	
34567 <i>8</i>	@W1 (watermelon)	
4567 <i>8</i>	@O2 (orange)	
567 <i>8</i>	@G1 (grape)	
678	@P1 (potato)	

Evaluation

- 1 Problem: Ambiguous Contextualized Retrieval
- 2 Approach: Spreading Activation
 - The Naive Way
 - Improvements
- Secondary Expression
 Secondary Expression

Original sentence:

The postman put the letter in the mailbox.

Original sentence:

The postman put the letter in the mailbox.

Corpus annotation:

The postman[1] put[1] the letter[2] in the mailbox[1] .

Original sentence:

The postman put the letter in the mailbox.

Corpus annotation:

The postman[1] put[1] the letter[2] in the mailbox[1].

What the agent receives:

postman[?] put[?] letter[?] mailbox[?]

"letter" corresponding to message, not character

Measure of Improvements

Task Performance

• How many guesses does it take to get the right word sense?

Time

• How long does a processing cycle take?

Measure of Improvements

Task Performance

• How many guesses does it take to get the right word sense?

Time

• How long does a processing cycle take?

Data Set - SemCor:

- Annotated version of a subset of the Brown corpus
- 352 texts of 2000 words each from fiction, nonfiction, books, journals, but no poetry
- >200,000 WordNet 3.0 sense references for nouns and verbs

Semantic Memory - WordNet 3.0:

- WordNet synonyms, antonyms, hypernyms, hyponyms, part-of, derivationally-related
- 470,000 nodes, 1,500,000 edges
- $\bullet \sim .5GB$

Working Memory (Context):

Previous words

Results

Spreading Activation Mechanism	Spread Time (s)
Naive Spreading	>100,000
+ Change-Only Processing	3316
+ Caching	1200
+ Precalculation	810
+ Query-Deferred Processing	803
+ Ambiguity-Only Processing	778
+ Candidate-Only Processing	245

Timed performance on the WSD task across seven variants.

Rows with prefaced with "+" denote an additional cumulative improvement.

Bold indicates an improvement implemented in ACT-R.

Nuggets Coal

Nuggets

Coal

Much faster spreading activation

Nuggets

Coal

- Much faster spreading activation
- Worst case is only as bad as previous worst case

Nuggets

- Much faster spreading activation
- Worst case is only as bad as previous worst case

Coal

No demonstration of spreading activation's utility

Nuggets

- Much faster spreading activation
- Worst case is only as bad as previous worst case

Coal

- No demonstration of spreading activation's utility
- Precalculation requires "large" database files

Future Work

Future Work

Edge Weights

Spreading Activation could be made to change over time similarly to Base-level Activation.