Automatic Value Function Refinement and

Unrefinement for Relational Reinforcement Learning

Mitchell Keith Bloch

University of Michigan
2260 Hayward Street
Ann Arbor, MI. 48109-2121

bazald@umich.edu

June 9, 2016

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu
mailto:bazald@umich.edu
http://bazald.com
http://www.umich.edu

Carli ~ Soar — https://github.com/bazald/carli

What'’s offered:
@ A Soar-like execution cycle
Meaning:
©® "io.input-link
@ elaboration-cyele
® numeric preferences (and implicit operator proposal)
O decide
o impasses
® act

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

https://github.com/bazald/carli
http://bazald.com
http://www.umich.edu

Carli £ Soar — https://github.com/bazald/carli

What'’s present:
@ Soar-RL-like reinforcement learning support

@ Architectural support for efficiently creating more specific RL-rules
over time — a generative model for a value function

What'’s missing or different:
@ Manipulating WMEs from the RHS has not been tested
@ Operators (as you know them) and impasses do not exist
@ Chunking, SMem, EpMem, and SVS do not exist

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

https://github.com/bazald/carli
http://bazald.com
http://www.umich.edu

What’s New?

A Sneak Peak:
@ All refinement criteria have corresponding unrefinement criteria.
@ Results demonstrating that rerefinement:

e Can save CPU time
o Can reduce regret
e Can improve the terminal policy

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Reinforcement Learning

@ Goals:

e Approximate «(s,a), the optimal target policy
e Minimize regret to the extent possible

@ How:

o Build up the set of features, ¢(i)
@ Rules are specialized/despecialized

e Update the weights, 6(i) using GQ()) during e-greedy exploration
@ The value function is refined/unrefined

e Use incremental algorithms for efficient, stable computation times

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Value Function Refinement Over Time

Before any refinement

wo,
fisfio, o,
b2 a2

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Value Function Refinement Over Time

Wo+Wi.1, | Wo+Wwi.2, @ @
L fa | Lo,

B | B fe
G) @) @6 @

After one refinement

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Value Function Refinement Over Time

Wo+Wi.1

+W3.1,

b, P2 Wo+w1.2,
1,2,

worwry | 2

+W3.2,

Py fon

After two refinements

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Relational Blocks World
C
BISIGENE
AeE [FELE

Table Table

Blocks Goal
Complete state description visual

@ Full representation of the goal presented by the environment

@ Allows variable goals and numbers of blocks for different episodes
@ Significantly more complex training goal
o Must test more than one relation

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

A Carli Agent Rule

sp {blocks-worldrl-fringe*ul6
:feature 3 unsplit blocks-worldxrl-fringexs3
(<s> "blocks <blocks>)
(<s> “goal <goal>)

: # Rule abbreviated
-{(<goal> “stack <goal-stack>)
(<stack> “matches <goal-stack>)}

——>
= 0.3290046905701842217

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

A Successor Carli Agent Rule

sp {blocks-worldsrl-fringe+u38
:feature 3 unsplit blocks-worldxrl-fringexsl6
(<s> "blocks <blocks>)
(<s> “goal <goal>)

: # Rule abbreviated
-{(<goal> “stack <goal-stack>)
<stack> “matches <goal-stack>)}
{(<goal> “stack <goal-stack>)
<dest-stack> "matches <goal-stack>)}

(
(
!
(

-—>
= 0.0

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Dynamic Refinement for RRL

@ Each state is described by a set of relations,
such as (<stack> “top <block>)

@ Each RL-rule / feature in ¢(i) represents a conjunction of any
number of such relations

@ Given ¢(i), 6(i), and other metadata, which features are most
likely to improve the value function?
@ We've explored the following criteria:
o Cumulative Absolute Temporal Difference Error
e Policy — Maximal change in 7 (s, a)
e Value — Maximal change in (i)
@ We’ve done so with:
o No unrefinement
Unlimited rerefinement
Rerefinement with blacklists
Rerefinement with boosts for previous choices

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Cumulative Absolute Temporal Difference Error

@ Focus on regions of high activity and error.

@ Track TD error experienced at each leaf node in the value function.

@ The nodes with highest error are eligible for specialization when
their features match.

@ Despecialization:

o Test whether error experienced at the internal “fringe” node is
greater than that accumulated by the child nodes.

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Policy Criterion

@ Focus on modifying policy (Whiteson 2007)

@ Choose features which maximize the change in the greedy set of
actions.
@ Despecialization:

e Simulate criterion as through no further refinement had been done.
o Evaluate whether a feature that was not chosen results in a larger
change in the greedy set of actions.

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Value Criterion

@ Focus on improving value estimates (Whiteson 2007)

@ Choose features which maximize value spread on specialization.
@ Despecialization:

e Simulate criterion as through no further refinement had been done.
e Evaluate whether a feature that was not chosen creates a wider
spread than the actual value function.

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Cumulative Absolute Temporal Difference Error

@ Metric focuses on regions of high activity and error
@ No unrefinement and boost are best

0 16.0
Q 14.0
B 200
2 12.0
LIQJ-‘ Z
o | 100 §
g 400 g
g 8o 2
.-
=
= —600 6.0 5
= : =
g : s 'y AERS B . catde-catde-none-5k| _{ 4 ()
S 800 PR catde-catde-bkls-Sk
) M ‘ .t catde-catde-bst-5k | . 2.0
M R q = " *) = catde-none-5k -1~
oo FATIP VAT " o L W P
10,000 15,000 20,000
Step Number

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Cumulative Absolute Temporal Difference Error

@ Metric focuses on regions of high activity and error
@ No unrefinement and boost are best

0 — 16.0
7] L.
S
3 14.0
24
(=¥
m 12.0 ”

-
* 100 §
,.O ------ E
5 80 2
g =
e 3)
250 |y e e T s 60 &
2)
2 -
= catde-catde-none-5k 4.0
< = catde-catde-bkIs-5k
= . o] = catde-catde-bst-5k |, .
E ------ *e s catde-none-5k 20
=
O L - 0.0
10,000 15,000 20,000

Step Number

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Policy Criterion

@ Focus on policy difference (Whiteson 2007)
@ Unlimited rerefinement is best

0 T T T 80.0
[70.0
B 20
2 60.0
e 2
500 §
g —400 £
,E 40.0 ::é
= —600)
B 30.0 ‘a
)
g . m——— policy-none-5k 20.0
= —800 L g — policy-policy-bkls-5k
() o0 e policy-policy-bst-5k 10.0
M * s policy-policy-none-5k| .
—1,000 ! ! ! 0.0
0 5,000 10,000 15,000 20,000

Step Number

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Policy Criterion

@ Focus on policy difference (Whiteson 2007)
@ Unlimited rerefinement is best

Cumulative Reward / # Episodes

Mitchell Keith Bloch (University of Michigan)

0

—50

—100

—150

—200

—250

—300

—350

—400

policy-none-5k —
policy-policy-bkls-5k
policy-policy-bst-5k

policy-policy-none-5k]|

Automatic

10,000
Step Number

s, a) (Un)Refinement for

15,000 20,000

RRL

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Unrefinements

http://bazald.com
http://www.umich.edu

Value Criterion

@ Focus on improving value estimates (Whiteson 2007)
@ Unlimited rerefinement and boost are best

0 45.0
—8 40.0
e 300 8
= —400)
< 250 &
o Q
= =)
= 200 &
S o0 =
150 &
el)
ze e value-value-none-5k
B —800 s value-value-bst-5k | 7| 10.0
(D) = value-value-bkls-5k
M s value-none-5k 4 5.0
—1,000 : ! | 0.0
0 5,000 10,000 15,000 20,000

Step Number

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Value Criterion

@ Focus on improving value estimates (Whiteson 2007)
@ Unlimited rerefinement and boost are best

Cumulative Reward / # Episodes

Mitchell Keith Bloch (University of Michigan)

0

—50

—100

—150

—200

—250

—300

—350

—400

.
.
.
.
.
.
.
.
.
= value-value-bst-5k

value-value-none-5k

value-value-bkls-5k
value-none-5k

Automatic

10,000
Step Number

15,000 20,000

s, a) (Un)Refinement for RRL

45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0

0.0

Unrefinements

http://bazald.com
http://www.umich.edu

Unrefinement helps with two of the three criteria.

Boost helps both CATDE and Value.

Boost’s hurting Policy casts doubt on it as a criterion. Perhaps the
dependency between the number of actions and environmental

relations makes it unsuitable for relational reinforcement learning.

Boost is expensive without some new optimization.

CPU Time | No Unrefinement | Unrestricted | Blacklisting | Boosting

CATDE 40.9 148.3 146.3 167.2
Policy 25.0 61.9
Value 36.2 115.0

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

Nuggets and Coal

Nuggets:
@ Rerefinement is implemented!
@ It can save CPU time and improve performance.
@ | can finish my thesis now.
Coal:
@ Internal “fringe” nodes necessary for policy and value
unrefinement criteria hurt performance.
@ Boost hurts performance even more without providing additional
guarantees about the terminal policy.
@ The policy criterion may unsuitable for relational reinforcement
learning.

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL

http://bazald.com
http://www.umich.edu

	Background
	High Level View
	Reinforcement Learning

	Research
	Blocks World

	Nuggets and Coal

