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Carli ~ Soar — https://github.com/bazald/carli

What'’s offered:
@ A Soar-like execution cycle
Meaning:
©® "io.input-link
@ elaboration-cyele
® numeric preferences (and implicit operator proposal)
O decide
o impasses
® act
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Carli £ Soar — https://github.com/bazald/carli

What'’s present:
@ Soar-RL-like reinforcement learning support

@ Architectural support for efficiently creating more specific RL-rules
over time — a generative model for a value function

What'’s missing or different:
@ Manipulating WMEs from the RHS has not been tested
@ Operators (as you know them) and impasses do not exist
@ Chunking, SMem, EpMem, and SVS do not exist
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What’s New?

A Sneak Peak:
@ All refinement criteria have corresponding unrefinement criteria.
@ Results demonstrating that rerefinement:

e Can save CPU time
o Can reduce regret
e Can improve the terminal policy
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Reinforcement Learning

@ Goals:

e Approximate «(s,a), the optimal target policy
e Minimize regret to the extent possible

@ How:

o Build up the set of features, ¢(i)
@ Rules are specialized/despecialized

e Update the weights, 6(i) using GQ()) during e-greedy exploration
@ The value function is refined/unrefined

e Use incremental algorithms for efficient, stable computation times
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Value Function Refinement Over Time

Before any refinement
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Value Function Refinement Over Time
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Value Function Refinement Over Time
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Relational Blocks World
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Table Table

Blocks Goal
Complete state description visual

@ Full representation of the goal presented by the environment

@ Allows variable goals and numbers of blocks for different episodes
@ Significantly more complex training goal
o Must test more than one relation
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A Carli Agent Rule

sp {blocks-worldrl-fringe*ul6
:feature 3 unsplit blocks-worldxrl-fringexs3
(<s> "blocks <blocks>)
(<s> “goal <goal>)

: # Rule abbreviated
-{(<goal> “stack <goal-stack>)
(<stack> “matches <goal-stack>)}

——>
= 0.3290046905701842217

Mitchell Keith Bloch (University of Michigan) Automatic ¢ (s, a) (Un)Refinement for RRL


http://bazald.com
http://www.umich.edu

A Successor Carli Agent Rule

sp {blocks-worldsrl-fringe+u38
:feature 3 unsplit blocks-worldxrl-fringexsl6
(<s> "blocks <blocks>)
(<s> “goal <goal>)

: # Rule abbreviated
-{(<goal> “stack <goal-stack>)
<stack> “matches <goal-stack>)}
{(<goal> “stack <goal-stack>)
<dest-stack> "matches <goal-stack>)}

(
(
!
(

-—>
= 0.0
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Dynamic Refinement for RRL

@ Each state is described by a set of relations,
such as (<stack> “top <block>)

@ Each RL-rule / feature in ¢(i) represents a conjunction of any
number of such relations

@ Given ¢(i), 6(i), and other metadata, which features are most
likely to improve the value function?
@ We've explored the following criteria:
o Cumulative Absolute Temporal Difference Error
e Policy — Maximal change in 7 (s, a)
e Value — Maximal change in (i)
@ We’ve done so with:
o No unrefinement
Unlimited rerefinement
Rerefinement with blacklists
Rerefinement with boosts for previous choices
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Cumulative Absolute Temporal Difference Error

@ Focus on regions of high activity and error.

@ Track TD error experienced at each leaf node in the value function.

@ The nodes with highest error are eligible for specialization when
their features match.

@ Despecialization:

o Test whether error experienced at the internal “fringe” node is
greater than that accumulated by the child nodes.
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Policy Criterion

@ Focus on modifying policy (Whiteson 2007)

@ Choose features which maximize the change in the greedy set of
actions.
@ Despecialization:

e Simulate criterion as through no further refinement had been done.
o Evaluate whether a feature that was not chosen results in a larger
change in the greedy set of actions.
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Value Criterion

@ Focus on improving value estimates (Whiteson 2007)

@ Choose features which maximize value spread on specialization.
@ Despecialization:

e Simulate criterion as through no further refinement had been done.
e Evaluate whether a feature that was not chosen creates a wider
spread than the actual value function.
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Cumulative Absolute Temporal Difference Error

@ Metric focuses on regions of high activity and error
@ No unrefinement and boost are best
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Cumulative Absolute Temporal Difference Error

@ Metric focuses on regions of high activity and error
@ No unrefinement and boost are best
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Policy Criterion

@ Focus on policy difference (Whiteson 2007)
@ Unlimited rerefinement is best
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Policy Criterion

@ Focus on policy difference (Whiteson 2007)
@ Unlimited rerefinement is best

Cumulative Reward / # Episodes
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Value Criterion

@ Focus on improving value estimates (Whiteson 2007)
@ Unlimited rerefinement and boost are best
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Value Criterion

@ Focus on improving value estimates (Whiteson 2007)
@ Unlimited rerefinement and boost are best

Cumulative Reward / # Episodes
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Unrefinement helps with two of the three criteria.

Boost helps both CATDE and Value.

Boost’s hurting Policy casts doubt on it as a criterion. Perhaps the
dependency between the number of actions and environmental

relations makes it unsuitable for relational reinforcement learning.

Boost is expensive without some new optimization.

CPU Time | No Unrefinement | Unrestricted | Blacklisting | Boosting

CATDE 40.9 148.3 146.3 167.2
Policy 25.0 61.9
Value 36.2 115.0
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Nuggets and Coal

Nuggets:
@ Rerefinement is implemented!
@ It can save CPU time and improve performance.
@ | can finish my thesis now.
Coal:
@ Internal “fringe” nodes necessary for policy and value
unrefinement criteria hurt performance.
@ Boost hurts performance even more without providing additional
guarantees about the terminal policy.
@ The policy criterion may unsuitable for relational reinforcement
learning.
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