Improving
Dynamic Procedural Knowledge
Learning

Mazin Assanie
University of Michigan
mazina@umich.edu

Motivation

* Chunking was a core initial capability of Soar that
has potential to drastically improve an agent’s
future performance as it gains experience solving
problems in the world

* Yet seldom used in real-world systems

e QOur goal:
1. ldentify problems that chunking currently has
2. Diagnose underlying source
3. Implement an improved algorithm to address

Chunking Terminology

Rule: Human-written production

Chunk: Rule learned from Soar’s rule learning
mechanism

Instantiation: Data structure created by Soar to
record a specific rule firing

Sp {propose
state <s> “superstate <ss>
<ss> “superstate nil
<ss> “object <f>

S5 “superstate S1
S1 “superstate nil
S1 “object subject

—

<s> “operator <o> + S5 “operator 01) +
<s> “operator <o> = MatCh S5 “operator 01) =

01 “iteml subject) +
01 “item2 subject) +

<p> “*iteml <f> +
<p> “*item2 <f> +

Rule Instantiation

Chunking Terminology

Rule: Human-written production

Chunk: Rule learned from Soar’s rule learning
mechanism

Instantiation: Data structure created by Soar to
record a specific rule firing

= Instantiation (1 2) of rule

propose

S5 (1) |Asuperstate S1(2)

Sp {propose
state <s> “superstate <ss>

<55> "superstate nil S1(2) [Asuperstate nil
<ss> “object <f> S1(2) Aobject |subject (3)
- Luzasy
A
<s> “operator <o> + Match S5 operator Ol +
A —
Nl qperator e S5 operator Ol =
<o> “iteml <f> + : :
<o> Aitem2 <f> + 01 iteml subject +
0] item2 subject +

Rule Instantiation

Problem-Solving in State Occurs

State

1

ww (1] | vwperee

acr il | eaperne wl

< 24 by <N

woridl | g furidie

i) | epawn |ooschie
e (00
DD e

Madahatin 18
qrhcme el |

e gty | A1)
T«nn\ln Sonperess oo 1Y .
| T
| | <O iy > 1ALy !
[|avem 591 | svrsber
| <mg-wahor 04 | '
[
: > cieagmany> |
| 3y “denl
(1 e ()| |
[W |
| oo | sewa
| | i
g v (311 | Aopeveten
| <hogmary> 1114 |
wn wwd pub o (9
] [

Dusariion 3 V) of wik
e

EeTET T

Ieancsanon | 5)of ri

Tantanttomn (1 % \ | ik
s [\ el
Adv PN Aperace S Y
e (Y avier ave
< A1) e e 1) w17 e e
< W e <th 1
B Sl s O | ket < {10
a8 -y o 1\]
| (o= 011 omermoer b | we (11} Jdo>es | amomedw | <o
Sem? “iIn 19 } /
| bw-:n ey «Lr M i~ Smriaer
P bt oL J
/ (1 ‘o (15} /|
| - | | IED
waTwiaer e Wi
I e f
vt arNie f
’ | n I warrwlin-n J«r:n Ye
s T (O LT R — e

Matwhaton 1 Tiod v
e |
Woo 2 |fedveakh P '
[o2 | Sopervne [[T ————————
! | wan-cmk
x | gy M4 ‘ iy
\ osam (291 | Sty wyn ()| S vl wyw AT
\ | <xp- o % |
o L. R «r X
[. <> <heogay> 4| o0 (W) | S ek <x» (40
o 15 “denl
w—wbpin (77} | [oo 1% [Sabmarber | ossbamabers (31
[A <o | sepentan e A2
|]|
\|o= et D o amot obgecs 14N
. b webgnes U0
o (20| Aepeveser
<l 148
% o <iragary> 4 rrem m—rm—pr™
ol O
O 9 el wn ok b (771 -
| | <ocr 4 (al
| s A okl oo
| <20 rn (43 rembt e |30 .
» o e A e Gt wbns Wi
. oo | e 1+ cub b || «

Impasse Occurs

State 1

* Agent does not have enough information to
make further progress in goal

(no rule can fire or no operator can be selected)

New Sub-state Created

e Soar creates a subgoal to resolve that lack of
information.

State 1 e

State 2

Rules Fire in Subgoal

* Problem-solving in the sub-goal attempts to generate
super-state knowledge to resolve the impasse

State 1 bl

State 2 EE—

Result Created

NEYAVAIES
in State 1

Chunking Happens

State 1

Future Situation

State 1 : i

—TTT | e o -
[T/ B T | e |
[~m (T T e \ i
T ERCEETTES — ol Bl o () Py
oo e\ ey s [) B o=
SESEf|siE =y -

[

Future Situation

State 1

Clhunk

<s>(39) | Asub-resultl <> (40)
<s>(39) Asub-result3 <> (40)
P LT) ew S
=) [mbmeaine | sibanmien @
< (9| superstate < @2) .
<> @2) | Mtem2 | <notsubject (43)
-ﬁ bl e owebe in St a t e 1
™ <> (%) | Poperator <o'>)
ot @s) | ttem2 <subject> (46)
<> @2) | resull <object2> (44) +

Processing Aveolded

How Chunking Originally Built Rules

* Three main mechanismes:
1. Instantiation tracking
2. Dependency analysis
3. Variablization

Dependency Analysis

* Soar determines the set of necessary working
memory elements in the superstate that were
needed for those rules to match.

* How?

— Starts with rules that create super-goal knowledge

— Traverses back through a trace of substate
instantiated rules that fired

— Anything that matches supergoal WMEs is added
to the set of necessary WMEs

Working Memory

State 1 WM

S1
superstate nil
number 23
item3 apple
math 91
item2 not-subject
object subject
result3 imaginary
type state
result4 | not-subject
result2 subject
resultl subject

Dependency Analysis

<> (39)

Asuperstate

<ss>(42)

<ss> (42)

Aitem2

<not-subject> (43)

<ss> (42)

Aobject

<object2> (44)

Rule that creates
the result

State 2 W

State 2

sub-resultl

! S5
quiescence t
superstate S1
type state
intermediate-na 33
intermediate-func 33 \
intermediate2 2
sub-result3 imaginary
sub-result2 imaginary
impasse no-change \
thrown-out not-subject \
sub-number 920 v -
attribute state .‘.‘ - =~
intermediate apple e — gy l"
choices none b e el s

imaginary e

Tmtentn) % o e

Toemn | =

‘ v
LS — S
L [| e

Working Memory Dependency Analysis

State 1 WM

S1
superstate nil
number 23
item3 apple
math 91
item2 not-subject
object subject

result3 imaginary

type state [

result4 | not-subject

result2 subject [

resultl subject

<s>(31) | Asuperstate <ss> (33)

[<> <imaginary> (32)

<ss>(33) | Anumber
[<my-number> (34)

[<imaginary> (32)

<s>(33) | Mitem2 [<not-subject> (35)
Spatial-scene utput-link \input-link <ss>(33) | Aobject }Od‘:w;’::i::m
<item3> (
<> (39) Asuperstate <ss> (42)
lid [world | <> (42) | Aitem2 <not-subject> (43)
<> (42) Aobject <object2> (44)
State 2 WM 55 State 2
quiescence t
superstate S1
type state
intermediate-na 33
intermediate-func 33
intermediate2 2
sub-result3 imaginary
sub-result2 imaginary
impasse no-change
thrown-out t-subject
sub-number 90
attribute state
intermediate apple
choices none
sub-resultl imaginary

item2 | subject

iteml | subject

o] [[[5]
[o]

Working Memory Dependency Analysis

State 1 WM

S1

superstate nil

number 23

item3 apple "

math 91

item2 | not-subject

object subject

result3 | imaginary <s>(23) | Asuperstate <ss> (25)

type state @9 | winbe <> <imaginary> (24)
<my-number> (26)

result4 | not-subject

result2 subject <> <imaginary> (24)
<ss>(25) Aitem2 =
resultl subject <not-subject> (27)
<> <imaginary> (24)
<ss>(25) | Mobject
<item3> (28)
<s>(31) | Asuperstate <ss>(33)
i eward-link
<> <imaginary> (32)

<ss>(33) [Anumber

<my-number> (34)

<> <imaginary> (32)

<ss>(33) Aitem2 <
<not-subject> (35)

a3 Nobiodk l<><imdginar‘\‘>(32)
553> (33 objec l

spatial-scene 3> (3
<item3> (36)

S4 <s>(39) | “superstate <ss> (42)
lid [world | & s> (42) | Aitem2 <not-subject> (43)
<ss> (42) Aobject <object2> (44)
State 2 WM 55 State 2
quiescence t
superstate S1
type state
intermediate-na 33
intermediate-func 33
intermediate2 2
sub-result3 imaginary
sub-result2 imaginary
impasse no-change
thrown-out not-subject
sub-number 90
attribute state
intermediate apple
choices none
sub-resultl imaginary (
item2 |subject

iteml | subject

Working Memory

State 1 WM

Dependency Analysis

item2 | subject

iteml | subject

o] [[[5]
[o]

S1
superstate nil
number 23
item3 apple
math 91
item2 not-subject
object subject
result3 | imaginary <s>(23) | Asuperstate <ss> (25)
type state siuron| wamie <> <imaginary> (24)
resultd | not-subject <my-number> (26)
result2 subject <ss> (25) Ajtemn2 <> <imaginary> (24)
resultl subject <not-subject> (27)
[< <imaginary> (24)
@) Hobea [<item3> 28)
<s>(31) | Asuperstate <ss> (33)
<ss>(33) | Anumber {O("“dg“:r)i:?
<my-number>
oty | direms [<imaginary> (32)
[<not-subject> (35)
o | [O
<item3> (
<> (39) Asuperstate <ss> (42)
<ss> (42) Aitem2 <not-subject> (43)
<> (42) Aobject <object2> (44)
quiescence t t
superstate S1 "
type state [
intermediate-na 33
intermediate-func 33 . ot
intermediate2 2 *l g
sub-result3 imaginary e - - —prve—T
sub-result2 imaginary —i
impasse no-change
thrown-out not-subject
sub-number 90
attribute state /
intermediate apple o ey l"v
choices none o 4
sub-result] imaginary P s {

Working Memory Dependency Analysis

State 1 WM

S1
superstate nil
number 23
item3 apple
math 91

item2 | not-subject

object | subject

result3 imaginary

type state <s>(23) | Asuperstate <ss>(25)
result4 | not-subject <> <imaginary> (24)
) <ss>(25) [Anumber
result2 subject <my-number> (26)
result] subject <> <imaginary> (24)
<ss>(25) Aitem2

<not-subject> (27)

<> <imaginary> (24)

<ss>(25) | Aobject
<item3> (28)

<s>(31) | Asuperstate <ss>(33)

<> <imaginary> (32)

<ss>(33) [Anumber
<my-number> (34)

<> <imaginary> (32)

<ss>(33) Aitem2 <
<not-subject> (35)

[< <imaginary> (32)

spatial-scene
<ss>(33) | Mobject l

<item3> (36)

m <s>(39) | Asuperstate <ss> (42)
<ss>(42) Nitem2 <not-subject> (43)
<ss> (42) Aobject <object2> (44)
quiescence t I
superstate S1
type state
intermediate-na 33
intermediate-func 33
intermediate2 2
sub-result3 imaginary
sub-result2 imaginary
impasse no-change
thrown-out not-subject \
sub-number 90 \
attribute state \
intermediate apple \
choices none
sub-resultl imaginary
\
item2 |subjec!

iteml | subject

o] [[[5]
[o]

Working Memory Dependency Analysis

State 1 WM

S1
superstate nil
number 23
item3 apple
math 91

item2 not-subject

object subject
<s>(23) | Asuperstate <ss> (25)

result3 imaginary
<> <imaginary> (24)
<ss>(25) [Anumber

type state
result4 | not-subject <my-number> (26)
result2 subject <> <imaginary> (24)
<ss>(25) Aitem2 =
resultl subject <not-subject> (27)

@5 Aobject [<><I||l<tgu|a{)>(3-1)
<ss> (21 objec l

<item3> (28)

<s>(31) | Asuperstate <s> (33)

<> <imaginary> (32)

<ss>(33) [Anumber
<my-number> (34)

<> <imaginary> (32)

<ss> (33) Aitem2 -
<not-subject> (35)

N [<> <imaginary> (32)
<ss>(33) | Aabject
[<item3> (36)

<s>(39) | Asuperstate <ss> (42)
<ss> (42) Nitem2 <not-subject> (43)
<ss> (42) Aobject <object2> (44)
R &=
quiescence t
superstate S1
type state
intermediate-na 33
intermediate-func 33
intermediate2 2
sub-result3 imaginary
sub-result2 imaginary
impasse no-change
thrown-out not-subject
sub-number 90
attribute state \
intermediate apple \
choices none
sub-resultl imaginary \
\

item2 | subject

iteml | subject

o] [[[5]
[o]

Working Memory

Dependency Analysis

State 1 WM

superstate nil
number 23
item3 apple <ss> (6) Anumber <f3>(7)
math 91 <ss> (6) Aitem3 <f>(8)
item2 | not-subject <533 (6) Atem2 <f2>(9)
object subject <ss> (6) “object <f1>(10)
result3 | imaginary * <s>(23) | Asuperstate <ss> (25)
<> <imaginary> (24)
pe state <ss>(25) | Anumber i il
result4 | not-subject <my-number> (26)
result? | subject <> <imaginary> (24)
<ss>(25) Atem2 2
resultl subject

<not-subject> (27)

<> <imaginary> (24)
<ss>(25) | Mobject

<item3> (28)

<s>(31) | Asuperstate <ss>(33)

<> <imaginary> (32)
<ss>(33) [Anumber

<my-number> (34)

7 <> <imaginary> (32)
<ss>(33) Mtem2

<not-subject> (35)

spatial-scene

<> <imaginary> (32)
<ss>(33) | Mobject

<item3> (36)
S4 <s>(39) | Asuperstate <ss> (42)
lid [world | o <> (42) | Aitem2 <not-subject> (43)
<ss> (42) Aobject <object2> (44)
A\ |
quiescence t
superstate S1
type state
intermediate-na 33
intermediate-func 33
intermediate2 2 1
sub-result3 imaginary ¢ |
sub-result2 imaginary
impasse no-change AT,
thrown-out not-subject B
sub-number 90
attribute state
intermediate apple
choices none
sub-result] imaginary
item2 |subject
iteml |subjecl

Working Memory

Dependency Analysis

State 1 WM

item] | subject

St <ss>(2) [#superstate | nil
superstate nil - -
number 23 <ss>(2) | “object <i>(3)
item3 apple <ss> (6) “number <f3>(7)
math 91 <ss> (6) Aitem3 <f>(8)
item2 | not-subject <533 (6) Atem2 <f2>(9)
object subject <ss>> (6) “object <f1>(10)
result3 | imaginary <s>(23) | Asuperstate <ss> (25)
<> <imaginary> (24)
type st <ss>(25) | “number it -
resultd | not-subject <my-number> (26)
result2 subject 25) i 3 <> <imaginary> (24)
<ss> (25 ttem2 -
resultl subject <not-subject> (27)
%) Aobject <> <imaginary> (24)
<553 (25 objec
% <item3> (28)
<s>(31) | Asuperstate <ss>(33)
<> <imaginary> (32)
<ss>(33) | Anumber e
<my-number> (34)
<> <imaginary> (32)
<ss>(33) | Aitem2 gA 4 <
<not-subject> (35)
spatial-scene pommand <s5>(33) Aabject <> <imaginary> (32)
<item3> (36)
P <s>(39) | Asuperstate <ss> (42)
<ss> (42) Nitem2 <not-subject> (43)
<ss> (42) Aobject <object2> (44)
S 2W
tate I State 2 S
gy)
quiescence t o4
superstate S1 |
type state P [© camgiary>
intermediate-na 33
intermediate-func 33 (@00 | A
intermediate2 2 1l g
sub-result3 imaginary S i
sub-result2 imaginary
impasse no-change
thrown-out not-subject Irasmanmay ootk
sub-number 90 T 8 — Y YT
T T T
attribute state ~ o 1
intermediate apple .
choices none et
sub-result] imaginary oo) | st
S—
g F s o o | e
item2 |sub]ect

=) b W
rek. crk s i+
-y s

4 b ik b 4 1)
- o b b |1+

What does chunking have now?

e Conditions:

— Working memory sp {chunk*start-chunk*snc*t2-1

(S1 ~superstate nil)
elements that were (S1 Anumber 23)
collected during the (51 “object O9)

(09 ritem3 apple)
traversal (S1 Aitem2 not-subject)

>
e Actions: S1 Aresult apple) +

— Working memory
elements that were Completely Specific!
created in the super-goal

Generalizing the Learned Rule

* To make the rule o chunkstartchunkesnce 2.1
more general, o1\ superstate ni
chunking replaces \~ CTTotea0g
soar identifiers with
variables

(S1 ~item2 not-subject)
A->
(S1 ~result apple) +

}

Generalizing the Learned Rule

°
TO make the rUIe sp {chunk*start-chunk*snc*t2-1
more generaL (<s> Asuperstate nil)

(<s> “number 23)

chunking replaces " <sx Aobject subject
(<s> Nitemd<o>)
Soar identifiers with (<o> Aitem2 not-subject)
->
Va nables \<s> ~result apple) +

Why is it not used?

Learned rules have issues with:

* Correctness: Learned rules don’t always effect the same inferences
as the original problem solving would have in the same situation.

* Generality: Learned rules don’t correctly apply to a broad range of
similar situations.

Both the amount of engineering to avoid generality issues and the lack
of confidence in the correctness of the rules causes agent engineers to

avoid chunking.

Diagnosis

* Current algorithms do not capture
and take advantage of all the
knowledge available about the
problem-solving that occurs.

Knowledge Not Brought to Bear

Reasoning underlying problem-solving

Knowledge with uncertain or opaque qualities

Knowledge from collapsed or missing reasoning]

Hypothesis

* Bringing this knowledge to bear will:

—Improve generality and correctness of
learned rules

— Eliminate need for special knowledge
engineering

— Allow chunks to consistently improve the
performance of our Soar agents

Agenda

1. Describe two generality and correctness issues
* Show 9.4 chunk

2. Describe knowledge not integrated
* Show explanation-based chunk

3. High-level overview of the mechanism

We’ll try to do two items...

Knowledge Not Brought to Bear

[Reasoning underlying problem-solving }

Knowledge with uncertain or opaque qualities J

{ Knowledge from collapsed or missing reasoning }

2

Identified Sources of
Generality and Correctness Issues

[

General lity J

{

Correctness }

]l

Knowledge Not Brought to Bear

Reasoning underlying problem-solving

[Constraints specified in rules

‘ Object identity

[Operator selection knowledge

Knowledge with uncertain or opaque qualities

Knowledge with opaque justification

opaque computation

Knowledge dependent on

{ Knowledge dependent on
{ probabilistic decisions

Declarative knowledge from a
changing memory store

Knowledge from collapsed or missing reasoning

Knowledge about properties of
architecture

Procedural knowledge that creates
conflated local results

{ Non-operational negative reasoning
{ Operationality changes

Now utilized Some utilized Not utilized

Preview

New EBC Mechanisms

Identified Sources of
Generality and Correctness Issues

Generate explanatory structures

Identity analysis

Identity-based variablization

Constraint collection and attachment

Operator selection knowledge
pruning and tracking

{ Operator selection knowledge integration

|
|
|
|
|
}

Literalization

Singleton unification

Repair using search

Detect and prevent rule from forming

Generality

3 { Over-specialized Variablization

Correctness

Correctness reasoning encoded
in search control knowledge

Generalizing opaque knowledge retrieval

Partial operationality due to temporal
existence constraint

Partial operationality due to local
promotion

{ Generalizing knowledge that later changes

Partial operationality
caused by state opaqueness

Learning a rule with no conditions

Disjunctive context conflation

New Mechanisms Proposed

Collapsed negative reasoning

Generalizing intermediate opaque
computation with a constraint

Learning rules based on
operators selected probabilistically

Operator Selection Knowledge

Identified Sources of

Knowledge Not Brought to Bear Generality and Correctness Issues

Reasoning underlying problem-solving Generality

Correctness

Correctness reasoning encoded
in search control knowledge

Knowledge with uncertain or opaque qualities

Knowledge from collapsed or missing reasoning

Learning Operator
Selection Knowledge (OSK)

sp {prefer*rock
(state <s> Aoperator <o> +
Aoperator {<> <o> <0Z2>} +
Asuperstate <ss>)
(<o> Aname rock)
(<ss> Aopponent-play scissors)
-->
(<s> Aoperator <o> > <02>) }

Learning Operator
Selection Knowledge (OSK)

 Knowledge in OSK rules are different than
other rules:

— Does not directly lead to removal or creation of
WMEs

— Not clear whether a rule firing plays a role in an
operator being selected.
— Dependent on:
e Other OSK rules that also fired
» Soar’s operator preference resolution logic

Working Memory

S1
Aoption paper Aopponent-play scissors

S2

Rule Instantiations

Chunk Formed

sp {propose*pick-play
(state <s> Asuperstate <ss>)
(<ss> Asuperstate nil
Aoption <play>)
-=>
(<s> Aoperator <o> +)
(<o> Aname <play>) }

sp {prefer*rock
(state <s> Aoperator <o> +
Aoperator {<> <o> <02>} +
Asuperstate <ss>)
(<o> Aname rock)
(<ss> Aopponent-play scissors)
-=>
(<s> Aoperator <o> > <02>) }

sp {make-chunk
(state <s> Asuperstate <ss>
Aoperator <o>)
(<o> Aname <play>)
-->
(<ss> Achosen <play>) }

Working Memory

S1
Aoption paper opponent-play scissors

S2
X ;

\
\

propose*pick-play paper

Rule Instantiations

\

Chunk Formed

l‘. propose*pick-play scissors

propose*pick-play rock /

sp

-=>

\/

{propose*pick-play

(state <s> Asuperstate <ss>)
(<ss> Asuperstate nil

Aoption <play>)

(<s> Aoperator <o> +)
(<o> Aname <play>) }

sp {prefer*rock
(state <s> Aoperator <o> +

Aoperator {<> <o> <02>} +

Asuperstate <ss>)
(<o> Aname rock)

(<ss> Aopponent-play scissors)
-->

(<s> Aoperator <o> > <02>) }

sp {make-chunk

(state <s> Asuperstate <ss>

Aoperator <o>)
(<0> Aname <play>)
-—>

(<ss> Achosen <play>) }

Working Memory
Aoption paper Aopponent-play scissors

S2

Aoperator paper + w
L Rule Instantiations / Chunk Formed
/ I * /
propose*plbk play paper g) propose p:|.c>k play scissors
\ J propose*pidkﬁplay rock/ //
prefer*rock rock > paper 4;_prefer*rock rock > scissors
x
sp {propose*pick-play sp {prefer*rock
(state <s> Asuperstate <ss>)
(<ss> Asuperstate nil

sp {make-chunk
(state <s> Aoperator <o> +
Aoption <play>)

-—>

(state <s> Asuperstate <ss>
Aoperator {<> <o> <02>} +
Asuperstate <ss>)

(<s> Aoperator <o> +)

Aoperator <o>)
(<o> Aname <play>)
(<o> Aname rock) >
(<ss> Aopponent-play scissors)
(<o> Aname <play>) } -—>

(<ss> Achosen <play>) }
(<s> Aoperator <o> > <02>) }

Working Memory

S1
Aoption paper Aopponent-play scissors

S2
Aoperator rock Aoperator paper + Aoperator scissors +

~
~

~
~

Rule Instantiations

~
N

Chunk Formed

~
~

~
~

i Al .
propose*pick-play paper [propose*pick-play scissors

propose*pick-play rock

prefer*rock rock > paper prefer*rock rock > scissors

sp {propose*pick-play
(state <s> Asuperstate <ss>)
(<ss> Asuperstate nil Aoperator {<> <o> <02>} +
Aoption <play>) Asuperstate <ss>)
--> (<o> Aname rock)
(<s> Aoperator <o> +) (<ss> Aopponent-play scissors)
(<o> Aname <play>) } -—>
(<s> Aoperator <o> > <02>) }

sp {prefer*rock
(state <s> Aoperator <o> +

sp {make-chunk
(state <s> Asuperstate <ss>
Aoperator <o>)
(<o> Aname <play>)
-->
(<ss> Achosen <play>) }

Working Memory

S1
Aoption paper Aopponent-play scissors

S2
Aoperator rock Aoperator paper +

" Rule Instantiations

Result

Chunk Formed

Efbpeagfpick—play scissors

propose*pick-play paper

make-chunk

propose*pick-play rock

prefer*rock rock > paper

prefer*rock rock > scissors

sp {propose*pick-play

(state <s> Asuperstate <ss>)

(<ss> Asuperstate nil
Aoption <play>)

-=>
(<s> Aoperator <o> +)
(<o> Aname <play>) }

sp {prefer*rock

(state <s> Aoperator <o> +
Aoperator {<> <o> <02>} +

Asuperstate <ss>)

(<o> Aname rock)

(<ss> Aopponent-play scissors)

-->

(<s> Aoperator <o> > <02>) }

sp {make-chunk
(state <s> Asuperstate <ss>
Aoperator <o>)
(<o> Aname <play>)
-->
(<ss> Achosen <play>) }

Working Memory

S1

S2
Aoperator rock Aoperator paper +

Rule Instantiations

Chunk Formed

i Al .
propose*pick-play paper propose*pick-play scissors

propose*pick-play rock

make —c}pl/

prefer*rock rock > paper prefer*rock rock > scissors

P
—

-~

sp {chunk*make-chunk*snc*t2-1
(S1 Asuperstate nil)
T (s1 Aoption rock)
-=>
(S1 Achosen rock +)
1 A

efer*rock

(state <s> Aoperator <o> +
Aoperator {<> <o> <02>} +
Asuperstate <ss>)

(<o> Aname rock)

(<ss> Aopponent-play scissors)

sp {propose*pick-play sp
(state <s> Asuperstate <ss>)
(<ss> Asuperstate nil
Aoption <play>)

-=>
(<s> Aoperator <o> +)
(<o> Aname <play>) } -—>
(<s> Aoperator <o> > <02>) }

sp {make-chunk
(state <s> |Asuperstate <ss>

Aoperator <o>)
(<o> Aname |<play>)

-->
(<ss> Achosen <play>) }

Working Memory

S1

S2
Aoperator rock Aoperator paper + Aoperator scissors +

~
~

~
~

Rule Instantiations

~
N

Chunk Formed

~
~

<
~
~

i Al .
propose*pick-play paper [propose*pick-play scissors

make-chunk

propose*pick-play rock ‘

prefer*rock rock > paper prefer*rock rock > scissors

sp {propose*pick-play
(state <s> Asuperstate <ss>)
(<ss> Asuperstate nil Aoperator {<> <o> <02>} +
Aoption <play>) Asuperstate <ss>)
--> (<o> Aname rock)
(<s> Aoperator <o> +) (<ss> Aopponent-play scissors)
(<o> Aname <play>) } -—>
(<s> Aoperator <o> > <02>) }

sp {prefer*rock
(state <s> Aoperator <o> +

sp {chunk*make-chunk*snc*t2-1
(S1 Asuperstate nil)
(S1 Aoption rock)
-=>
(S1 Achosen rock +)

sp {make-chunk
(state <s> Asuperstate <ss>
Aoperator <o>)
(<o> Aname <play>)
-->
(<ss> Achosen <play>) }

Working Memory

S1

S2
Aoperator rock Aoperator paper + Aoperator scissors +

~
~

~
~

Rule Instantiations

~
N

Chunk Formed

~
~

<
~
~

i Al .
propose*pick-play paper [propose*pick-play scissors

make-chunk

propose*pick-play rock ‘

prefer*rock rock > paper prefer*rock rock > scissors

sp {prefer*rock
(state <s> Aoperator <o> +

sp {propose*pick-play
(state <s> Asuperstate <ss>)
(<ss> Asuperstate nil Aoperator {<> <o> <02>} +
Aoption <play>) Asuperstate <ss>)
--> (<o> Aname rock)
(<s> Aoperator <o> +) (<ss> Aopponent-play scissors)
(<o> Aname <play>) } -—>
(<s> Aoperator.<o> > <02>) }

sp {chunk*make-chunk*snc*t2-1
(S1 Asuperstate nil)
(S1 Aoption rock)
-=>
(S1 Achosen rock +)

sp {make-chunk
(state <s> Asuperstate <ss>
Aoperator <o>)
(<o> Aname <play>)
-->
(<ss> Achosen <play>) }

Working Memory

S1

’ \
N ’
N\

Aopponent-play scissors

’
’

\ 7 ,
7’

82 \\\ \‘ ///
Rule Instantiations /" Chunk Formed
. ta\\\\\\ pr&éése*plck/play seissors sp {chunk*make-chunk*snc*t2-1
propose Plbk play paper / (state <sl> Asuperstate nil)

’
’

/ (<s1> Aopponent-play scissors)
, (<s1> Aoption rock)
make-chunk = (<s1> Aoption <c2>)
(<s1> Aoption <cl>)

-—>
prefer*rock rock > paper {° | prefer*rock rock > scissors (<s1l> Achosen rock +)

ks
sp {propose*pick-play sp {prefer*rock sp {make-chunk
(state <s> Asuperstate <ss>) (state <s> Aoperator <o> + (state <s> Asuperstate <ss>
(<ss> Asuperstate nil Aoperator {<> <o> <02>} + Aoperator <o>)
Aoption <play>) Asuperstate <ss>) (<0> Aname <play>)
--> (<o> Aname rock) >
(<s> Aoperator <o> +) (<ss> Aopponent-play scissors) (<ss> Achosen <play>) }

(<o> Aname <play>) } -—>

(<s> Aoperator <o> > <02>) }

Utilizing

Operator Selection Knowledge

Knowledge Not Brought to Bear

Reasoning underlying problem-solving

Operator selection knowledge %

Knowledge with uncertain or opaque qualities

New EBC Mechanisms

Operator selection knowledge
pruning and tracking

‘ Operator selection knowledge integrationk

Knowledge from collapsed or missing reasoning

Knowledge about properties of
architecture

Identified Sources of
Generality and Correctness Issues

Generality

Correctness

Correctness reasoning encoded
A in search control knowledge

Utilizing
Operator Selection Knowledge

* When new operator gets selected in substate:
— Cache operator preference knowledge
— Prune out irrelevant preferences

* When a chunk is created
— Determines all operators tested in trace

— Backtraces through rules that created the OSK
preferences that was cached for those operators

* This creates additional conditions in chunk

Architectural Knowledge Neede

Preference resolution:

All operator
preferences

one required operator

RequireTest

/ multiple required operatars

else

require is also prohibited

-all operator preferences are input to the resolution procedure
-each step may add or remove some operator candidates
-only some steps may exit

Outcome of
preference
resolution

» winner returned

constraintfailure
impasse

AcceptableCollect
all acceptable

candidates are
passed on

ProhibitFilter
all nonprohibited

candidates are
passed on

one candidate remaining

» winner returned

RejectFilter

/ no candidates remaining

all nonrejected
candidates are
passed on

BetterWorseFilter

all candidatesare
worse than another

none selected
(no-change impasse)

conflictimpass

pass along only
candidates that
are not worse

BestFilter
oass along only

-andidates that are
best; if none, pass

one candidate remaining

winner returned

on all candidates
WorstFilter

all nonworst
candidates are

no candidates remainin

remining candidates are
ALL mutually indifferen

none selected
(no-change impasse)

winner will be
chosen based on

passed on

VAT

IndifferentTes

remaining candidates are

NOT mutually indifferen

userselect setting

tie impasse

Limite

Knowledge Not Brought to Bear

Reasoning underlying problem-solving

Operator selection knowledge %

Knowledge with uncertain or opaque qualities

New EBC Mechanisms

Operator selection knowledge
pruning and tracking

‘ Operator selection knowledge integration k

Knowledge from collapsed or missing reasoning

Knowledge about properties of architecture

d Ability to Variablize

Identified Sources of
Generality and Correctness Issues

Generality

J Limited ability to variablize l

Correctness

Correctness reasoning encoded
A in search control knowledge

Water-Jug Chunk in Soar 9.4

sp {chunk*9.4.0
: chunk
(state <sl1> ~operator)
(~name fill)
(~ill-jug <f1>)
(<f1l> ~filled-jug yes)
(<fl> ~picked-up yes)
(<f1l> ~volume 5)
(<f1l> ~contents 3)
-->
(<f1l> "“picked-up yes -)
(<f1l> ~filled-jug yes -)
(<f1l> ~contents 5 +)
(<f1l> ~contents 3 -)}

Water-Jug Chunk in Soar 9.4

sp {chunk*9.4.0
: chunk
(state <sl1> ~operator)
(~name fill)
(~ill-jug <f1>)
(<fl> ~filled-jug yes)
(<fl> ~picked-up yes)
(<f1> ~volume 5)
(<f1l> ~contents 3)
-->
(<f1l> "~picked-up yes -)
(<f1l> ~filled-jug yes -)
(<f1l> ~contents 5 +)
(<f1> ~contents 3 -)}

Chunk Comparison

sp {chunk*9.4.0 sp {chunk*9.5
: chunk : chunk
(state <sl1> ”~operator) (state <sl1> ”~operator <o0l>)
(~name fill) (~name <c3>)
(~ill-jug <f1>) (~fill-jug <il>)
(<fl> ~filled-jug yes) (<il> ~filled-jug yes)
(<fl> ~picked-up yes) (<il> ~picked-up yes)
(<f1> ~volume 5) (<il> ~volume {> <c2> <cl1>})
(<f1l> “~contents 3) (<il> “~contents <c2>)
-=> -=>
(<fl> ~picked-up yes -) (<il> ~picked-up yes -)
(<fl> ~filled-jug yes -) (<il> ~filled-jug yes -)
(<fl> ~contents 5 +) (<il> ~contents <cl> +)
(<f1l> ~contents 3 -) (<il> ~contents <c2> -)
(<f1l> ~rhs 8 +)} (<f1> “rhs (+ <cl> <c2>) +)}

Chunk learned in Soar 9.4.0 What we want 49

sp {chunk*
: chunk

(state <sl1> “operator)

(
(
(<f1>
(<f1>
(<f1>
(<f1>
-=>

(<f1>
(<f1>
(<f1>
(<f1>
(<f1>

Chunk Comparison

sp {chunk*9.5
: chunk
(state <sl1> ”~operator <o0l>)

9.4.0

“name fill)
AMill-jug <f1>)
rfilled-jug yes)
~picked-up yes)
~volume 5)
~contents 3)

~picked-up yes -)
~filled-jug yes -)
~contents 5 +)
~contents 3 -)
“rhs 8 +)}

Chunk learned in Soar 9.4.0

(
(
(<il>
(<il>
(<il>
(<il>
-=>

(<il>
(<il>
(<il>
(<il>
(<f1>

Aname <c3>)

AMill-jug <il>)
rfilled-jug yes)
~picked-up yes)

Avolume {> <c2> <cl>})

Acontents <c2>)

~picked-up yes -)
~filled-jug yes -)
Acontents <cl> +)
~contents <c2> -)
~rhs (+ <c1> <c2>)

What we want

+)}

50

Knowledge Needed

Knowledge Not Brought to Bear

Reasoning underlying problem-solving

New EBC Mechanisms

Identified Sources of
Generality and Correctness Issues

Generality

‘ Constraints specified in rules

\
|
‘ Object identity k—

‘ Operator selection knowledge

Knowledge with uncertain or opaque qualities

|

Knowledge from collapsed or missing reasoning

Knowledge about properties of architecture

[—

A\

Operator selection knowledge
pruning and tracking

‘ Operator selection knowledge integration k

Limited ability to variablize ‘

A\ 4

Correctness

Correctness reasoning encoded
A in search control knowledge

More General Variablization

Identified Sources of

Knowledge Not Brought to Bear New EBC Mechanisms Generality and Correctness Issues
Reasoning underlying problem-solving I Generality
P Generate explanatory structures T —
‘ Constraints specified in rules ‘ Limited ability to variablize ‘
> Identity analysis (]
‘ Object identity Correctness
T Identity-based variablization 7 c - Jod
Operator selection knowledge " t_)rrectners]s rea;solnll(ng elnc do N
Y in search control knowledge

Constraint collection and attachment]

—¥

Knowledge with uncertain or opaque qualities

\ Operator selection knowledge
pruning and tracking

D4
LN

ANy

Operator selection knowledge integration

Knowledge from collapsed or missing reasoning

Knowledge about properties of architecture

* Chunking learned all its knowledge purely by
analyzing the working memory trace.

w 'S)
start-chunk

(S3 “sub-result1 imaginary-food)
(S3 “sub-result2 imaginary-food)
(S3 “superstate S1)

(S3 “operator O1)

(S3 "operator O1) (O1 Mood2 vegetable)

(O1 “ood2 vegetable) =2

(S3 tintermediate apple) (S1 “resuit2 imaginary-food)

(O1 *food1 vegetable) \(81 “eat vegetable)

->

(S3 Aintermediate2 2)

(S3 Asuperstate S1)
(S1 Asuperstate nil)
(S1 Mruit vegetable)
=P

(O1 Mood2 vegetable) [*—
(O1 *ood1 vegetable)
(S3 “operator O1) =
(S3 “operator O1)

r(83 Asub-result2 imaginary-food)1

(S1 “superstate nil) (S3 Asuperstate S1)
-> (S1 Mood2 not-vegetable)
(S1 “iood3 apple) - (S1 Mruit vegetable) p N
(S1 “food2 not-vegetable) (S3 Aoperator O1) (S3 “operator O1)
(S1 “fruit vegetable) (O1 *ood1 vegetable) \ (O1 Mood2 vegetable)
-> (S3 “intermediate2 2)

(S3 Asub-result1 imaginary-food)

(S3 “superstate S1)

(S1 *food3 apple)

(S1 “food2 not-vegetable)
(S1 “fruit vegetable)

->

(S3 “intermediate apple)

(S3 “thrown-out not-vegetable)

(S3 “intermediate apple)
(S3 “superstate S1)
=

(S3 “sub-result2 imaginary-food)

53

How does EBC differ from chunking?

 EBC learns more general knowledge by
also analyzing the explanation trace

— Original rules written by human
knowledge expert are superimposed
over the WME trace to create an

“explanation trace”

((@apmpmsstate S1)) , .
(Sistatpessidmpiirstafe <ss>) e
(S f<ig i (Sistatb<esuisuli)
r >(<ss>t"lwruit <f>) (S§<subudsudButagmyry-food)
(O+3f00d2 vegetable) |*— (SHuAmpam88)<ss>)
(Of<Steddpamgetamie)¥— (Si<opeognadd)<o’1>)
(Saopt otyces (o::uuztoeqewtam»)
(S3<tmpétatar GF} +) \ (S (<sesUedimagiaapiesd)
\\\ (S (<=t hsgedtdle)> +))
' ma mAgin g
&P Kirduperstate nil) (supesstateS1) %md
-->{state <s> “superstate nfl) 19 ?W <nol-uepgiable>)
(S1-3food3 apple) gﬁﬁﬁi&eﬁﬁ o <food3 })
(S (<dpodaihveyegEibie) (S@H0penaior @¥inary-lood> < not-vegelable <vegelable:) @3 dppiréiteralaation
(S (<suifwegetablejegetable +) (Q1. Mgl NeaRlabieh. ., (Otstiteds végptakey <0>)
— — (S 3<intéfoneifiatege2ible)
(S3 *sub-resuit1 imaginary-food) (S $<antémeniiEte) ajgdaib>)
. s (S¥supenstanedis)e <a>)
—->{<s> “superstate <ss>)

(S33sub-result2 imaginary-food)
Wﬂﬁm&g&mrrfo(d +)}
 @qemparstate S1)
(S{stinedS applg)erstate <ss>)

(S (<dendiopoBveigtable)

(S (<Ymit Vegezabies)

—->{<ss> Mruit <f1>)
(S&Athrown-out not-vegetable)

(S<antémaninee) aepid) +)

55

(S1 "superstate nil)

->

(S1 food3 apple)

(S1 “food2 not-vegetable)
(S1 *fruit vegetable)

-

V(SS Asuperstate S1)

(S1 Asuperstate nil)
(S1 Mruit vegetable)
=>

(O1 *ood2 vegetable) |*

(01 Mood1 vegetable)

(S3 Aoperator O1) = (S3 “operator O1)
(S3 “operator O1) (01 Moodz2 vegetable)
s (S3 “intermediate apple)

(O1 Mood1 vegetable)
=2
(S3 tintermediate2 2)

(S3 “sub-resulit2 imaginary-food)
(S3 Asuperstate S1)

(S1 Mood2 not-vegetable)
(S1 AMruit vegetable)

(S3 “operator O1)

(S3 Asub-result1 imaginary-food)

(S3 “superstate S1)

(S1 “food3 apple)

(S1 “food2 not-vegetable)

(S1 “ruit vegetable)

—->

(S3 “thrown-out not-vegetable)
(S3 “intermediate apple)

(O1 Mood1 vegetable) \
->

rstart-chunk

(S3 “sub-result1 imaginary-food)
(S3 “sub-result2 imaginary-food)
(S3 “superstate S1)

(S3 “operator O1)

(O1 Mood2 vegetable)

->

(S1 “result2 imaginary-food)

(S1 “eat vegetable)

o

r(83 “operator O1)

(01 Mood2 vegetable)
(S3 %intermediate2 2)
(S3 %intermediate apple)

(S3 “superstate S1)
->

(S3 “sub-result2 imaginary-food)

56

(sp {propose

o

sp {start-chunk
(state <s> “sub-result1 <r>)
(<s> Asub-result2 <r>)
(<s> “superstate <ss>)

(sp {init
(state <s> “superstate nil)
->
(<s> Mruit vegetable +)
(<s> Mood2 not-vegetable +)
(<s> *ood3 apple +)}

(<s> “operator <0*1>)
(<0"1> Mood2 <vegetable>)
->

(<ss> “eat <vegetable> +)

(<ss> “result2 <r> +)}

-

(<> ‘supersiale <ss>)

(s> ‘operalar <o)

=
(s> *sub-resull1 imaginary-foed +))

(state <s> “superstate <ss>)
(<ss> “superstate nil)
(<ss> Mruit <f>)
--> ‘;
(<s> “operator <0> +) p \
(<s> “operator <0> =) sp {elab*b
(<0> Mood1 <f> +) ¥~ (state <s> “operator <0>)
(<0> Mood2 <f> +)} (<0> Mood2 vegetable)

/ (<s> “intermediate <f>)

\ (<0> Mood1 <f1>)
->
Aintermediate2 2 +)}
(sp {apply*constraints N

(slale <s> *sub-result2 <imaginary-food>)

(<ss> Mood2 { <> <imaginary-lood> <nol-vegelable> })
(=58> Mrull { < <imaginary-lood> <food3=)}

(<o Mood! { < <imaginary-food> <> <nol-vegetables <vegetables })

RN

»

sp {elab’a
(state <s> “superstate <ss>)
(<ss> Mood3 <f>)
(<ss> Mood2 <f2>)
(<ss> Mruit <f1>)
->
(<s> tintermediate <f> +)

(<s> “thrown-out <f2> +)}

-
.

/

sp {apply“literalization
(state <s> “operator <0>)
(<0> Mood2 vegetable)
(<s> tintermediate2)
(<s> tintermediate <a>)
(<s> “superstate <ss>)
->

(<s> Asub-result2 imaginary-food +)}

57

Generating Hybrid Explanatory
Structure

 Working memory trace augmented
— Any additional constraints in original rules are added

— All items that matched a variable are assigned a unique
variablization ID

Rule condition Matched WME
(<s> "i1tem <other>) (S3 "item food)
(<s> "foo { <> <other> <bar>}) (S3 ~“"foo bar)

becomes...

(S3:1 *item food:2)
(S3:1 *foo { <> food:2 bar:3})

More General Variablization

Identified Sources of

Knowledge Not Brought to Bear New EBC Mechanisms Generality and Correctness Issues
Reasoning underlying problem-solving Generality
pri Generate explanatory structures ~~
‘ Constraints specified in rules ‘ Limited ability to variablize ‘
* . . ,/
— Identity analysis 1 /
Object identity
~ v Correctness
T Identity-based variablization q -
Operator selection knowledge Correctness reasoning encoded
W A in search control knowledge
7 Constraint collection and attachment]
Knowledge with uncertain or opaque qualities
N Operator selection knowledge
/1 pruning and tracking
/
Operator selection knowledge integration 1

Knowledge from collapsed or missing reasoning

Knowledge about properties of architecture

* During backtracing, EBC analyzes how conditions
in rules are connected to the actions in other
rules

~

-~

'sp {propose

(state <s> “superstate <ss>)
(<ss> “superstate nil)

(<ss> Mruit <f>)

=>

(<s> “operator <0> +)

sp {start-chunk
(state <s> “sub-result1 <r>)
(<s> “sub-result2 <r>)
(<s> “superstate <ss>)
(<s> “operator <0*1>)

4

(<s> "operator <0> =) sp {elab’b (<0*1> Mood2 <vegetable>)
->
(<0> Mood1 <f> +) (state <s> “operator <0>)
(<0> Mood2 <f> +)} (<0> Mood?2 vegetable) z:zi teast:nvzegre;ag? +)
. < (<s> Nintermediate <f>) L)
(<0> Mood1 <f1>)

—>
Aintermediate2 2 +)}

sp {apply*constraints
— (slale <s> *sub-result2 <maginary-foods)
sp (Iﬂlt (s> Asupersiale <ss>)
(state <s> “superstate nil) (sat> Mand2 { = <imagindry-inac> <nal-nagetable>))
(<88 Mrult { < <imaginary-fosd> <focd3=)
= : (=8> ‘operalor <o) - N
(<s> Mruit vegetable +) (<02 Hood1 { < <imaginary-foodz < <not-vegetabl blex }) sp {apply’literalization
(<s> "food2 not-vegetable +) (<t Mub-resull imaginary-food +)) (state <s> “operator <0>)

(<s> Mood3 apple +)} (<0> Mood2 vegetable)

(<s> tintermediate2)
(<s> Aintermediate <a>)
(<s> “superstate <ss>)
=
(<s> *sub-result2 imaginary-food +)}
rsp {elab*a]
(state <s> “superstate <ss>)
(<ss> Mood3 <f>)
(<ss> Mood2 <f2>)
(<ss> Mruit <f1>)
->
(<s> tintermediate <f> +)
(<s> Mhrown-out <i2> +)}

During backtracing, EBC analyzes how conditions
in rules are connected to the actions in other
rules

All of these

sp {propose) — \
(state <s> *superstate <ss>) sp {start-chun
elements refer to (<ss> "superstate nil) (tate <5> *sub-rosul <)
(<ss> Mruit <f>) (<s> Asub-result2 <r>)
h “« b : ” iy - (<s> superstate <ss>)
t e Sa m e O J e Ct (> rtr > ? <0*1> *ood2 <vegetabl i
-
and hence share an (<ss> "eal <vegetable> 4
(<ss> “result2 <r> +)}

identity

Aintermediate2 2 +)}

sp {applyconstraints
(stale <s> *sub-result? Smaginary-foods)

sp {init
(state <s> “superstate nil)
| (<s> *Mruit vegetable +
> 0 _-'.t
(<s> Mood3 apple +)}

(<ss> Mood2 { <= -:.lmag naly -ood> <nol-vegetablex })

(<5 ‘operalor <oo|
(<o Mood1 { < <imaginary-k
-

odz> <> <not

sp (apply h(erahzauon
(s> ‘sub-resulll imaginary-foed +))

(<o> "foodz vegetable

(<s> Amtermedlate <a>)
(<s> “superstate <ss>)

->
(<s> *sub-result2 imaginary-food +)}
sp {elab’a
(state <s> “superstate <ss>)
(<ss> Mood3 <f>)

< <ss> Mruit <f1>)

(<s> Aintermediate <f> +)
(<s> Mhrown-out <i2> +)}

51

ldentity Analysis

* During backtracing:

— Using special rules, it determines all variablization
IDs that share the same “identity”

* More general form of EGG algorithm [Mooney 86] that
maps identities to “identity sets” rather than variables
to other variables in the trace

* Substitution rules extended to accommodate other EBC
mechanisms
— Many chunking mechanisms perform their
operations based on identity sets now

ldentity Propagation Rules

- Match is not STI, parent condition has identity, and RHS action has identity that appears on LHS
- Add mapping from RHS identity to IUS that parent condition is in
- Add mapping from source identity to target identity unification set
- Determine target mapping
- If target IUS is null identity set
- Target IUS is null identity set
- Else
- If mapping from target identity to IUS already exists
- Target IUS is existing IUS mapping
- Else
- Just use passed in target IUS
- If there is already a mapping for source identity
- If source identity is already member of null identity set
- If target IUS is not null identity set
- Update all mappings that point to target IUS to point to null identity set
- Else nothing b/c both are members of null identity set
- Else (already mapped to an IUS)
- If target IUS is null identity set
- Update all existing mappings that point to existing mapping to point to null identity set
- Add a mapping from source identity to null identity set
- Else
- Add a mapping from source identity to existing mapping
- Add a mapping from target identity to existing mapping
- Update all existing mappings that point to source mapping to point to existing mapping
- Update all existing mappings that point to target mapping to point to existing mapping
- Else

- Add a mapping from source identity to target IUS determine in first step

More General Variablization

Identified Sources of

Knowledge Not Brought to Bear New EBC Mechanisms Generality and Correctness Issues
Reasoning underlying problem-solving Generality
Generate explanatory structures .
‘ Constraints specified in rules ‘ Limited ability to variablize ‘
Identity analysis 7l
‘ Object identity
e Correctness

Identity-based variablization

Operator selection knowledge

/ " Correctness reasoning encoded

in search control knowledge

Constraint coiiection'and attachment]

@08

Knowledge with uncertain or opaque qualities

Operator selection knowledge
pruning and tracking

[y

D4

ANy

Operator selection knowledge integration

Knowledge from collapsed or missing reasoning

Knowledge about properties of architecture

ldentity-Based Variablization

* |f an item has no identity value,
— Keep literal match value
— Throw out additional constraints

* |f an item has an identity value,
— Look up identity set

— Replace match value with variable assigned to
identity set

More General Variablization

Identified Sources of

Knowledge Not Brought to Bear New EBC Mechanisms Generality and Correctness Issues
Reasoning underlying problem-solving Generality
o Generate explanatory structures .
‘ Constraints specified in rules ‘ Limited ability to variablize ‘
> Identity analysis (]
Object identity
L Correctness
\ T Identity-based.variablization q C " - ded
0 t lection k led orrectness reasoning encode
‘ perator selection knowleage N // " in search control knowledge
7 Constraint collection and attachment]
Knowledge with uncertain or opaque qualities —_—
N Operator selection knowledge
/1 pruning and tracking
/
Operator selection knowledge integration 1

Knowledge from collapsed or missing reasoning

Knowledge about properties of architecture

Floating Constraints

* Problem occurs when

— Arule copies a value from a superstate WME to a substate
WME

— Another substate rules tests that local WME and places
and constraint on its value

— That constraint applies transitively to original identity

* Condition with new constraint only test a local WME
— That means the condition will not appear in the chunk

— So a necessary constraint will be lost and rule will be
incorrect

Floating Constraint Example

WME accessed via a <variable>

rsp {propose] - N
A sp {start-chunk
22’;: fss;pesr:pme:;sﬁlt)e -) (state <s> “sub-result1 <r>)
(<ss> Mruit <f>) (<s> “sub-result2 <r>)
-> - (<s> “superstate <ss>)
(<s> operator <0> +) VA >
(<s> “operator <0> =) e 1> *ood2 <vegetablez) §
(<0> Mood1 <f> +) O
egetable> +)
Shnes (<ss> result2 <r> +)}

sp {apply*constraints
(slale <s> *sub-result2 <maginary-

sp {init
(state <s> “superstate nil)

(<s> “lrun vegetable +
; ot=vegetable +)

/ (<s> “food3 apple +)}

(<n> 'ioom {o i

(<.0 Asub-result! imaginary-foed +))

(<s> Asuperstate <ss>)
-
(<s> "sub-reiltz imaginary-food +)}
sp {elab’a)
C rea t €s W M E (state <s> “superstate <ss>)
(<ss> Mood3 <f>)
(<ss> Mood2 <f2>)
(<ss> Mruit <f1>)
—> . .
(<s> tintermediate <f> +)
=1 Floating Constraint .

Constraint Collection and Attachment

* When backtracing:

— Keeps track of all constraints in the backtrace and
the variablization identity that they constrain.

e Before variablization:

—|If identity of constraint exists in chunk and
constraint is not already in chunk,

* Finds another test with the same identity and
attaches the constraint to it

Key Thing To Remember

* When decomposing problems in our
agents, we now should be more
deliberate and consider how knowledge
is delineated:

— What knowledge is needed

— How it is copied or linked, and
— How it is accessed

EBC Change That Affects Access

* What happens when 2 conditions match the
same WME?

— Because chunking uses a WM trace...
* Literally identical
* Chunking will only adds one condition
— Because EBC uses an explanation trace

* Each condition may have different identities and constraints
* EBC will add both

* |n some sense, we say the line between states is
opaque to EBC.

Consider State Barrier as Opaque

Chunking

S S S1
Working
Memory
A
s2 s2 % s2
Conditions / \ ! ! !
that Matched
in the substate
Condition 1 Condition 2 Condition 1 Condition 1 Condition 2

Chunking will only add one
condition to the chunk

Consider State Barrier as Opaque

ST

S1
Memory ; 5 ' '
| |

/ \
/ \
O
/ \
S2 / \ S2
/ \
/ \

Conditions

‘that matched Condition 1 Condition 2 Condition 1 Condition 2
in the substate

EBC will always add both conditions, and they may end up
having different variables

Consider State Barrier as Opaque
EBC

Working
Memory

s2 s2

Conditions

that matched Condition 1 Condition 2 Condition 1 Condition 2
in the substate

EBC will always add both conditions, and they may end up
having different variables

Current Status

Knowledge Chunking Now Uses

Identified Sources of

Knowledge Not Brought to Bear New EBC Mechanisms Generality and Correctness Issues

Reasoning underlying problem-solving Generality
Generate explanatory structures
[Constraints specified in rules p { Over-specialized Variablization
Identity analysis
‘ Object identity
Correctness

Identity-based variablization
ty Correctness reasoning encoded

in search control knowledge

[Operator selection knowledge

Constraint collection and attachment

Generalizing opaque knowledge retrieval

Knowledge with uncertain or opaque qualities

Operator selection knowledge

. L Partial i li |
pruning and tracking artial operationality due to tempora

existence constraint

Knowledge with opaque justification

Partial operationality due to local
promotion

|
|
|
|
|
}

g Operator selection knowledge integration
opaque computation

Knowledge dependent on

probabilistic decisions

{ Knowledge dependent on
{ Literalization

{ Generalizing knowledge that later changes

Declarative knowledge from a

v Partial operationality
changing memory store

caused by state opaqueness

Singleton unification

Knowledge from collapsed or missing reasoning

Repair using search Learning a rule with no conditions

Knowledge about properties of
architecture

Disjunctive context conflation

Detect and prevent rule from forming

Procedural knowledge that creates
conflated local results

Collapsed negative reasoning

New Mechanisms Proposed Generalizing intermediate opaque

computation with a constraint

{ Non-operational negative reasoning
{ Operationality changes

Learning rules based on

operators selected probabilistically

Now utilized Some utilized Not utilized Mitigated

Potential New Mechanisms

Knowledge Not Brought to Bear

Reasoning underlying problem-solving

Constraints specified in rules }

Object identity }

Operator selection knowledge }

Knowledge with uncertain or opaque qualities

Knowledge with opaque justification

Knowledge dependent on
opaque computation

probabilistic decisions

{ Knowledge dependent on

Declarative knowledge from a
changing memory store

11 q

Knowledge from

Knowledge about properties of
architecture

or missing re ing

Procedural knowledge that creates
conflated local results

Operationality changes

e
[Non-operational negative reasoning k

Now utilized Some utilized Not utilized

New EBC Mechanisms

Identified Sources of
Generality and Correctness Issues

Generate explanatory structures

Identity analysis

Identity-based variablization

Constraint collection and attachment

Generality

[Over-specialized Variablization J‘

Operator selection knowledge
pruning and tracking

Operator selection knowledge integration

. W "W ANym——

Literalization

Singleton unification

Repair using search

Detect and prevent rule from forming

|
|
|
|

rd

—

el

New Mechanisms Proposed

Sub-problem logic exposure

Probabilistic chunks

Problem-solving partitioning

Opportunistic negative context detection

Repair using promotion tracking

Correctness

Correctness reasoning encoded
in search control knowledge

Generalizing opaque knowledge retrieval

Partial operationality due to temporal
existence constraint

Partial operationality due to local
promotion

Generalizing knowledge that later changes

caused by state opaqueness

Learning a rule with no conditions

Disjunctive context conflation

Collapsed negative reasoning

Generalizing intermediate opaque
computation with a constraint

Learning rules based on
operators selected probabilistically

|
|
|
|
|
Partial operationality J‘
|
|
|
|
|

Nuggets

Available now.

Now used by most people in our lab.
— Tester zero (James) has been using for 1.5 years

Has been used with agents that do many
advanced, convoluted things

Minimal knowledge engineering required

20x - 80x improvement on some agents
already

Coal

e Can be difficult to understand how a chunk
was formed

— Real-world examples are way more complex

— Many aspects not discussed

e Still needs:
— More formal quantitative evaluation of utility
— Profiling of memory and CPU usage

— Documentation

