

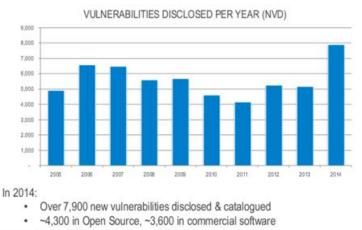
FRAMEWORK FOR TRUSTWORTHY AUTONOMY

36th Soar Workshop Ann Arbor, Michigan

SOARTECH

Modeling human reasoning. Enhancing human performance.

Scott D. Lathrop Director, Secure Autonomy


PROBLEM – CYBERSPACE RELATED ISSUES Increasing Complexity

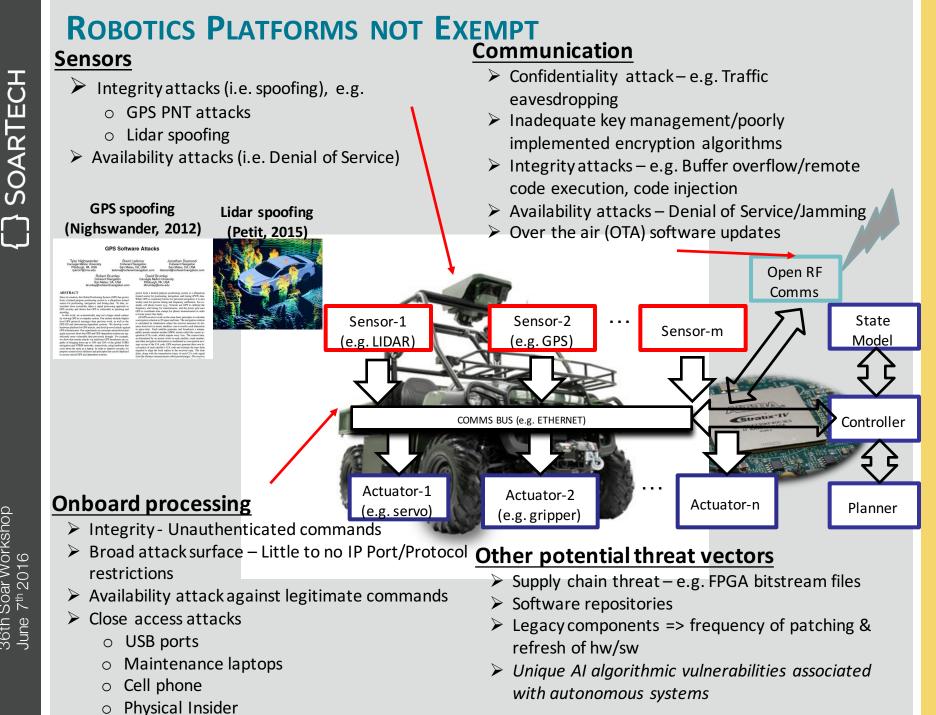
Increasing Vulnerabilities

NIST

INCREASING VULNERABILITIES

Automatic Alack Duck Software knowledgebare, NVD

Space Shuttle: ~400K LOC F22 Raptor fighter: ~2M LOC Linux kernel 2.2: ~2.5M LOC Hubble telescope: ~3M LOC Android core: ~12M LOC Army Future Combat Sys.: ~63M LOC Connected car: ~150M LOC Autonomous vehicle: ~300M LOC


Increasing Threats

INCREASING THREATS

36th Soar Workshop June 7th 2016

_] SOARTECH

INSIGHTS

General Principles

- Cybersecurity != Cyberspace defense--cannot defend everything focus on "key terrain"
- > Must be able to detect, characterize, respond, and adapt within mission context

Adversary actors

- > Multiple "online" personas associated with one physical identity
- Tactical actions derived from goals/intents
- >Both parallel (e.g. reconnaissance, DDOS) and sequential (e.g. delivery/exploitation) action
- Cognitive, Logical, and Physical indicators

Cyberspace Layer	Indicators	Detection Difficulty (Relative)	Adversary Cost to Change (Relative)	
Persona/Cognitive	 Personas and Identities Intent/Goals Tactics, Tech., Procedures + C2 	Hard	Medium (more difficult after foothold is	
Logical	 Social Presence and communication Malware variants IP addresses/TCP Ports Configurations/Logs File hashes 	Low->Medium (depending on adversary sophistication)	gained) Low	
Physical	 Infrastructure Computing nodes Electromagnetic Spectrum Geo-Location Persona biometrics (key stroke, mouse patterns, facial recognition) 	Medium	High (lower after foothold is gained)	

INSIGHTS

General Principles

- Cybersecurity != Cyberspace defense--cannot defend everything focus on "key terrain"
- Must be able to detect, characterize, respond, and adapt

Adversary actors

- > Multiple "online" personas associated with one physical identity
- > Multiple tactical actions (derived from goals/intents) to achieve objectives
- >Both parallel (e.g. reconnaissance, DDOS) and sequential (e.g. delivery/exploitation) action
- Cognitive, Logical, and Physical indicators

• Shortfall of expertise

Generation Gap Could Lead to a Cybersecurity Worker Shortage

Schools are scrambling to provide courses that emphasize cybersecurity, an element traditional computer science tracks have not included.

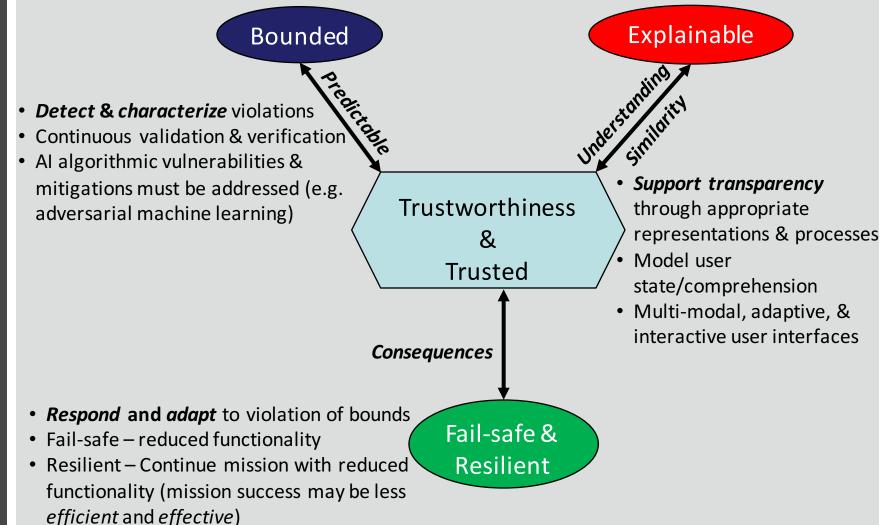
- > Well documented shortage of cyber expertise
- Combat units do not have cognitive resources to fight kinetic and non-kinetic fight simultaneously
- > Demands some autonomy (but there is a complexity tradeoff)
- Autonomous systems present new attack vectors
 - Key benefit to autonomy system's ability to "decide what to do next"
 - > Decision knowledge emerges from perception and memory both subject to compromise
- Trustworthiness & Trust Key obstacle to employment of autonomous systems

SOARTECH

CONCEPTUAL APPROARCH TRUSTWORTHY FRAMEWORK

FOR AUTONOMY

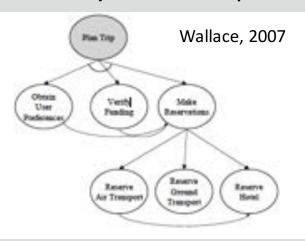
Hypothesis: Trustworthy framework for autonomy composed of three characteristics

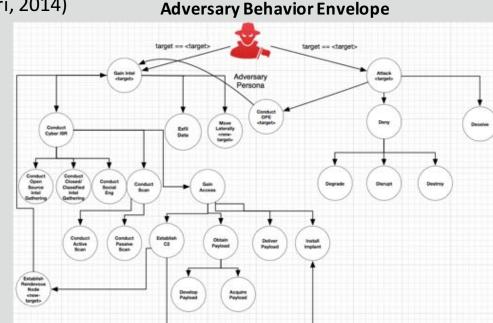


Trust Models*				
Ratnasignham , 1998	Deterrence	Knowledge	Identification	Common traits: Predictability
Lewis & Weigert, 1985	Cognitive	Emotional	Behavioral	 Understanding Similarity
Fahrenholtz, 2001	Habits	Passion	Policy	• Consequences

CONCEPTUAL APPROACH - TRUSTWORTHY FRAMEWORK FOR

Αυτονομγ


Hypothesis: Trustworthy framework for autonomy composed of three characteristics



CHALLENGES & POTENTIAL APPROACHES

Bounded behavior – *detect & characterize*

- Behavioral meta-models (Wallace, 2007)
- Monitoring and Validating Synthetic Behavior (Jones, 2015)
- Top-down, Abductive Reasoning for Behavior Detection (Crossman, 2011)
- Ethics (Arkin, 2012)
- Safety Envelope for Security (Tiwari, 2014)
- Cyber (?) Research Gap Friendly Behavior Envelope

"Trust but verify"

- Army leadership

philosophy

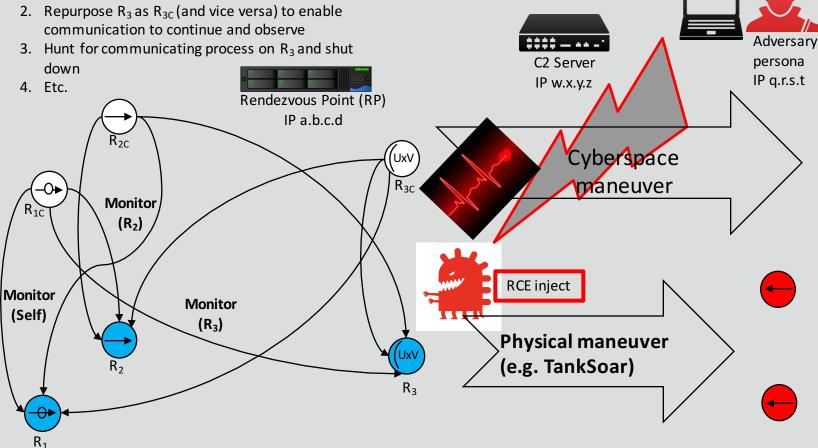
• Explainable - Support Transparency

- > Episodic Memory (Nuxoll, 2007)
- Model of User state/comprehension + multi-modal interfaces (Taylor, 2012)

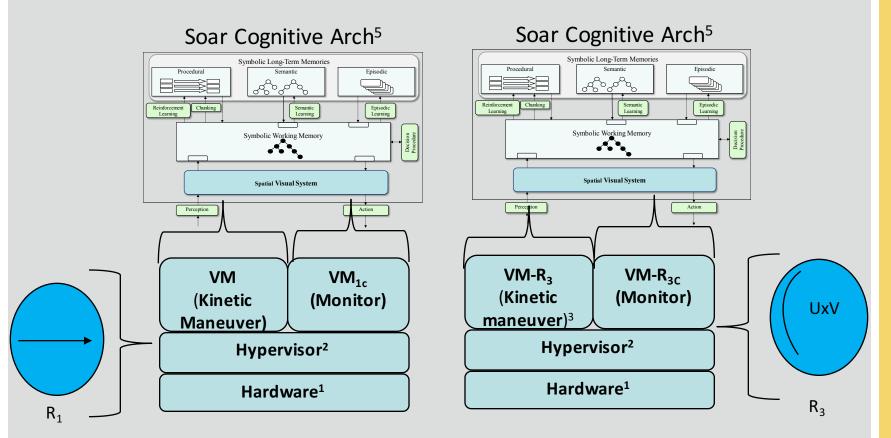
• Fail-Safe & Resilient - Respond and adapt -- Research gaps

- What/Who makes decision to move to a fail-safe state?
- What are the space of actions?

CYBER DEFENSE BATTLE BUDDY CONCEPT USE CASE (Friendly)


- 1. R_{1C}, R_{2C}, R_{3C} observe multiple R₃ connections to a.b.c.d/443 via logged connections
- R_{1C}, R_{2C}, R_{3C} (majority) agree that R₃ has a boundary violation (transmitting to unknown IP) and recommend/decide on one of following actions (situation dependent (*cyberspace maneuver*)
 - 1. Block IP connections to a.b.c.d (via R_3 iptables)

USE CASE (Adversary)


- 1. Gain access to R_3 via remote code exploit (RCE) through RF inject into vuln. P2P software (e.g. a ROS Node)
- 2. Decrypt install binary and write to disk

7. On order wipe drive (destroy)

- 3. Execute install to extract in-memory implant/backdoor
- 4. Send heartbeat to C2 server and receive instructions for rendezvous collection point; Remove install binary
- 5. (Persona through C2 server) recon file system for relevant plans
- 6. On order execute exfil to RP (repeat) mission plans

CYBER DEFENSE BATTLE BUDDY TECHNICAL APPROACH

NOTES:

¹General Purpose Processor (GPP) or embedded system with ability to partition address space ²Hardware based hypervisor for efficiency and to support out-of-band processing.

 $^{3}VM_{1}$ (or more) – focused on the tactical behaviors to support synchronized kinetic + non-kinetic maneuver

⁴VM₂– focused on behavior monitoring (communicate with other monitors preferable using outof-band, non-operational link).

10

WHAT DOES SOAR HAVE TO DO WITH THIS APPROACH?

Procedural

- Hierarchical control & reasoning
- Abductive reasoning (hypothesis testing)
- Transitions to fail-safe states (policies)

<u>Semantic</u>

- Adversary attack graphs (doctrinal templates)
- Compute network nodes and connections
- Friendly tools, techniques

EVALUATION - NONE

{SOME RESEARCH & EVALUATION QUESTIONS}

- What are the design space tradeoffs?
 - Number and types of monitoring agents?
 - Self-monitoring or group monitoring with voting (majority) algorithm
 - Soar controlling both tactical kinetic/non-kinetic behavior and cyber defense monitoring agents? If separate, how/when do they interact?
 - What is CPU overhead? Communications overhead?
- What cyber-related knowledge is most useful for detection?
 - Cognitive are behavior envelopes sufficient for tracking adversary behavior?
 - Logic OS/App logs, file hashes, security tools' output
 - > Physical emissions, spatial (e.g. geolocation) and temporal
- What are the unique vulnerabilities associated with AI systems? What are potential mitigation countermeasures?
- What is necessary for supporting infrastructure?
 - Modeling and simulation environment and tools to support development and experimentation
 - Physical platforms, space, and cyber/EW tools to support live experimentation

12

NUGGETS & COAL

Nuggets	Coal
Exploring Soar applicability in a new domain (Cyberspace)	No design, implementation, evaluation ⊗
Exciting, explosive area	Unclear of right approach – much hype around AI and "cognitive" approaches
A lot of interest (+Work)	A lot of work