
Learning General and Efficient
Representations of Novel Games through

Interactive Instruction

James Kirk, John Laird

Accepted Paper ACS 2016

Soar Workshop 2016

1

Extensions to Game Learning

1) Expand the diversity and complexity of tasks to seventeen games

2) Increase the transfer of knowledge between tasks through
hierarchical compositions of concepts

3) Decrease the processing time required to process instructions, learn new
tasks, and execute those tasks through chunking

4) Allow Rosie to learn many tasks in succession without suffering
substantial slowdown as knowledge is acquired

2

Old vs. New

3

Task Concept Representation

• A task concept: action, goal, failure, or new predicate is defined by
– A linguistic term (“stacked”, “three-in-a-row”, “clear”)

– A conjunction of predicate tests (clear(X) ^ block(X) ^ ….)

– Usage specific to the type (action -> proposal, goal -> success, failure -> terminal state …)

• Objects
– Physical objects (o1,o2….)

– Numbers (n1,n2….)

– Strings (s1, s2…)

– Sets of objects (O1, O2…)

• Predicates p(x,….)
– Unary features: red, large, block, location, clear

– N-ary relations: on, behind, between

• Functions y= f(x..) represented by predicate p(y,x…)
– number-of, attribute-of, sum

4

Concept Learning Process

1. Structure Learning
a. Natural Language Processing

b. Declarative Predicate Structure Construction

2. Interpretation Phase
a. Predicate Matching (Grounding)

b. Joining (Satisfying)

c. Application (Usage Matching)

3. Dynamic Compilation through Chunking

We will illustrate this process on the following goal sentence:

The goal is that a small block is on a medium block and a large
block is below the medium block.

5

Structure Learning

6

From predicate conjunction a declarative tree structure is built for efficient bottom
to top evaluation

For each predicate:
1. Added to structure on top of last reference to tested object

2. Stored as last reference to tested object (xn)

3. Leaf nodes (first references) will be evaluated directly against the world

Iterates through predicates based on arity: unary, binary, n-ary

• Predicate Matching
– Retrieve semantics of predicate based on linguistic term (“number of”-> count operator, “red” -> primitive

color, “on” -> spatial preposition)

– Evaluate predicates within context of world state and children in tree

7

Interpretation

A,B,C,X,Y,Z

• Predicate Matching
– Retrieve semantics of predicate based on linguistic term (“number of”-> count operator, “red” -> primitive

color, “on” -> spatial preposition)

– Evaluate predicates within context of world state and children in tree

– Evaluate block on all world objects (A-Z) : A, B, C

8

Interpretation

A,B,C,X,Y,Z

A,B,C A,B,C A,B,C

• Predicate Matching
– Retrieve semantics of predicate based on linguistic term (“number of”-> count operator, “red” -> primitive

color, “on” -> spatial preposition)

– Evaluate predicates within context of world state and children in tree

– Evaluate block on all world objects (A-Z) : A, B, C

– Evaluate small on A, B, C : A

9

Interpretation

A,B,C,X,Y,Z

A,B,C A,B,C A,B,C

A BC

• Predicate Matching
– Retrieve semantics of predicate based on linguistic term (“number of”-> count operator, “red” -> primitive

color, “on” -> spatial preposition)

– Evaluate predicates within context of world state and children in tree

– Evaluate block on all world objects (A-Z) : A, B, C

– Evaluate small on A, B, C : A

– Evaluate on on (A,B) : <A,B>

10

Interpretation

A,B,C,X,Y,Z

A,B,C A,B,C A,B,C

A BC

<A,B> <C,B>

• Predicate Matching
– Retrieve semantics of predicate based on linguistic term (“number of”-> count operator, “red” -> primitive

color, “on” -> spatial preposition)

– Evaluate predicates within context of world state and children in tree

– Evaluate block on all world objects (A-Z) : A, B, C

– Evaluate small on A, B, C : A

– Evaluate on on (A,B) : <A,B>

• Joining, Satisfying
– Evaluate intersection of results from predicate matching

– Result is the objects and values that satisfy all constraints

• Application
– Goal: detection of goal/winning

– Action: proposal of available actions

– Failure: detection of terminal state/losing

– New predicates: successful predicate match
11

Interpretation

A,B,C,X,Y,Z

A,B,C A,B,C A,B,C

A BC

<A,B> <C,B>

12

Dynamic Compilation: Chunking

• Predicate Matching

sp {chunk*justification-641*t1279-1

:chunk

(state <s1> ^gtype <c2> ^<c2> <a1>)

(<a1> ^condition <c3>)

(<c3> ^name <block1> ^attribute <category> ^rtype single

^type attribute ^args <a2> ^parameter <p1>

^result.set <p2>)

(<p1> ^num { < 2 <c7> })

(<a2> ^1 <c8>)

(<c8> ^result.set <r3>)

(<r3> ^instance <i1>)

(<i1> ^1 <n1>)

(<n1> ^predicates <p3>)

(<p3> ^<category> <block1>)

-->

(<p2> ^instance <i2> +)

(<i2> ^1 <n1> +)

}

13

Dynamic Compilation: Chunking

• Predicate Matching

sp {chunk*justification-641*t1279-1

:chunk

(state <s1> ^gtype <c2> ^<c2> <a1>)

(<a1> ^condition <c3>)

(<c3> ^name <small1> ^attribute <size> ^rtype single

^type attribute ^args <a2> ^parameter <p1>

^result.set <p2>)

(<p1> ^num { < 2 <c7> })

(<a2> ^1 <c8>)

(<c8> ^result.set <r3>)

(<r3> ^instance <i1>)

(<i1> ^1 <n1>)

(<n1> ^predicates <p3>)

(<p3> ^<size> <small1>)

-->

(<p2> ^instance <i2> +)

(<i2> ^1 <n1> +)

}

14

Dynamic Compilation: Chunking

• Predicate Matching

sp {chunk*justification-680*t1284-1

:chunk

(state <s1> ^list <l1> ^type <goal> ^<goal> <a1>

^world <n1>)

(<a1> ^condition <n6>)

(<n6> ^name <on1> ^rtype single ^type spatial-preposition ^args <a2>

^negative false ^result.set <p5> ^parameter <p2>)

(<a2> ^num 2 ^2 <c5> ^1 <c6>)

(<p2> ^num 2)

(<c5> -^rtype set ^result.set <p3>)

(<c6> -^rtype set ^result.set <p4>)

(<l1> ^game <g1>)

(<n1> ^predicates <p1>)

(<p1> ^predicate <n2>)

(<n2> ^handle <c2> ^instance <n3>)

(<n3> ^2 <n4> ^1 <n5>)

(<p4> ^instance <i2>)

(<i2> ^1 <n5>)

(<p3> ^instance <i1>)

(<i1> ^1 <n4>)

-->

(<p5> ^instance <i3> +)

(<i3> ^2 <n4> + ^1 <n5> +)

}

15

Chunking

• Application: Term and
structure linking

sp {chunk-multi*chunk-game-impasse*apply*complete*snc*t2417-2

:chunk

(state <s1> ^retrieve-game blocks-world)

-->

(<s1> ^retrieve-handle stacked-up2 +)

}

sp {chunk-multi*chunk-predicate-impasse*apply*complete*goal*snc*t2410-1

:chunk

(state <s1> ^retrieve-handle stacked-up2 ^type goal)

-->

(<s1> ^goal <p1> +)

(<p1> ^parameter-set <p3> + ^primary-rtype single + ^nlp-set <p13> +

^handle stacked-up2 +)

(<p3> ^argnum 3 +)

(<p13> ^conditions <n1> + ^conditions <n2> +)

(<n1> ^type state-pair + ^name on1 + ^attribute prepositions +

^result <r1> + ^parameter <p6> + ^negative false + ^args <a4> +

^rtype single +)

(<a4> ^1 <c1> + ^2 <c4> + ^num 2 +)

(<c1> ^type attribute + ^name small1 + ^attribute size + ^result <r2> +

^parameter <p9> + ^negative false + ^args <a3> + ^rtype single +)

(<a3> ^1 <c2> + ^num 1 +)

(<c2> ^type attribute + ^name block1 + ^attribute category + ^result <r3> +

^parameter <p11> + ^negative false + ^args <a2> + ^rtype single +)

(<c4> ^type attribute + ^name medium1 + ^attribute size + ^result <r11> +

^parameter <p24> + ^negative false + ^args <a11> + ^rtype single +)

(<a11> ^1 <c8> + ^num 1 +)

(<c8> ^type attribute + ^name block1 + ^attribute category +

^result <r12> + ^parameter <p26> + ^negative false + ^args <a10> +

^rtype single +)

(<a10> ^1 <c9> + ^num 1 +)

.

.

.

}

Action Example

16

on

block

location

move

clear

adjacent

location

on-to

~below

input block

Legend
Verbs
Relations
Inputs
Unary Features
Learned Predicates

~diagonal

input1 input2

next-to

> If a block is on a location that is adjacent to a clear location then you can

move the block onto the clear location.

I don’t know the concept adjacent.

> If a location is next to a clear location but it is not diagonal with the clear

location then it is adjacent to the clear location.

Learned Predicates

17

• From composition of primitives can

learn many new typs of knowledge

• Learned concepts can be
• General across domains(clear)

• Task/domain specific (matched, yours)

• Mapping is many-to-many

• Prepositions
• adjacent

• Labels
• captured, your, current

• Functions
• passenger-of, husband-of

• Synonynms, Antonyms, and Homonyms
• huge, crimson

• clear and covered

• matched

If a location is below your block then it is captured.

If a block is red then it is your block.

If a bank is below the boat then it is the current bank.

If an object is on a boat then it is a passenger of the

boat.

If the last-name of a woman is the last-name of a man

then the man is the husband of the woman.

If a block is large then it is huge.

If an object is below a block then it is covered.

If the value of a location is the value of the tile that is on

the location then the location is matched.

If the color of a location is the color of the block that is

on the location then the location is matched.

More Sentence Examples

18

1. You can move a clear block onto a clear location. [Blocks World]

2. The goal is that there are eight matched locations. [Eight Puzzle]

3. If the number of cannibals on a bank is more than the number of missionaries on the bank

then you lose. [Missionaries and Cannibals]

4. The goal is that all locations are covered and the number of captured locations is more than

the number of occupied locations. [Othello]

5. If the locations between a clear location and a captured location are occupied then you can

move a free red block onto the clear location. [Othello]

6. If a woman is on a bank and the husband of the woman is not on the bank and another man

is on the bank then you lose. [Jealous Husbands]

7. You can move a passenger of the boat onto the current bank. [Fox Puzzle]

8. The goal is that all the red blocks are on the red locations and all the blue blocks are on the

blue locations. [Frogs and Toads]

17 Games

19

• Missionaries and Cannibals

• Jealous Husbands problem

• Frogs and Toads puzzle

• Eight Puzzle

• Five Puzzle

• Tower of Hanoi (3 blocks)

• Tower of Hanoi (4 blocks)

• Fox Puzzle

• Tic-Tac-Toe

• Othello

• Three Men’s Morris

• Picaria

• Nine Holes

• Simplified Risk

• Mahjong Solitaire

• Simple Maze

• Blocks World

3x3 Board Games

20

River Crossing Puzzles

21

Evaluation

• 3000 randomly generated permutations of 17 games

• Scripted language, simulated symbolic domain

• Analyze efficiency and the affects of order (transfer)
– Communication time (number of words)

– Processing time

– Memory sizes

22

Communication Efficiency

23

Processing Efficiency

24

Semantic and Procedural Memory

25

Working Memory

26

Nuggets and Coals

Nuggets

• Demonstrates generality over many games and puzzles

• Hierarchical composition of concepts allows the definition of many new
concepts and improves efficiency of communication

• Variablized Chunking drastically improves efficiency of processing

• No substantial slowdown over many successive tasks

Coals

• Doesn’t learn policy or heuristic knowledge, only iterative deepening
search

• Does not scale well to handle large number of objects

• Not robust to errors in teaching

27

Questions?

28

