

Managing Competing Objectives in Soar

Scott Hanford

Distribution A

Approved for Public Release; distribution is unlimited

Outline

- Navigation plan components and current execution
- Incorporation of in situ constraints
- Competing objectives

Navigation plan provides constraints

- Areas (space and time constraints) the vehicle must both stay within and keep out of
- Waypoints to guide navigation and provide opportunities to achieve mission objectives

Distribution A

Contacts are primary in situ constraint

- Navigation plan
 - Can consider expectations about contacts
 - Execution must be adapted based on in situ sensing
- Bearings only sensing
 - Build information over time
 - Target motion analysis
 - Requires a change in course or speed to learn information about contact

time

Simultaneous consideration of multiple goals

Maneuver must consider simultaneous goals

- In isolation, decisions relatively simple
- Consider constraints from other relevant goals
- Resolve conflicting cases
 - Prioritize
 - Acceptance of more risk
- Possible use of alternative resolution techniques

Representation of goals

- Current agent executes navigation plan using complex operators
 - Agent design performed before understanding of importance of contact management
 - Have created top-state goals maintained using ad hoc system
- Consider use of New Goal System

Summary

- Nuggets
 - Interesting problem space with decisions that can take advantage of Soar's strengths
 - Many decisions may be correct: explanations help a decision to be considered acceptable
- Coal
 - Initial agent design performed with incomplete understanding of problem