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Motivation

Motivation

Can an agent use its reasoning
and interaction capabilities to
improve its perception ?
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Source: thejetsons.wikia.com
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Hybrid Intelligence

What is Hybrid Intelligence ?

Hybrid Intelligence has been studied under di↵erent names:

Hybrid Intelligent Systems: ”Computational architectures integrating
neural and symbolic processes.” [4]

Human-in-the-loop Systems: ”The system asks humans to make
judgments whenever the computer is less confident – resulting in the
most accurate, trustworthy system.”[1]

Symbiotic Autonomy: ” [...] a robot reasons about, plans for, and
overcomes its limitations by proactively asking humans in the
environment for help”. [6]

Mohamed El Banani (Soar Group) {Human, Soar} in the loop June 7, 2017 6 / 19



Hybrid Intelligence

Reasons for Hybrid Intelligence

Di↵erent intelligent systems have di↵erent strengths:

Symbolic Rule-based systems work very well when the environment
can be abstracted in such a way that allows rules to be applied.

Connectionist systems work very well when a general pattern exists in
the data.

Humans can flexibly deal with anomalies and novel cases, and they
think out of the ”box”.

Systems that are able to leverage the strengths of all those systems are
likely to perform better than any single one of those sytems.
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Viewpoint Estimation

Task Description

Estimate the agent’s
viewpoint from a 2D image.

A richer description than
location or object class.
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Source: PASCAL 3D+ Dataset [7]



Viewpoint Estimation

Typical Approaches

Match image to a 3-D
model.[2]

Train a neural network.[3]
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Source: Top: FPM [2]. Bottom: Render
For CNN [3]



Viewpoint Estimation

Human-in-the-loop Viewpoint Estimation
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Source: Click-Here CNN [5]



Viewpoint Estimation

Soar-in-the-loop Viewpoint Estimation

Why use Soar ?

1 Interface to minimize expected
human input.

2 Provide an autonomous agent
with more control over its
perception.
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Source: Nate Derbinsky



Viewpoint Estimation

SVS meets Deformable Parts Models

Part detectors combined with a parts model could allow for reasoning
about part relations.

SVS would support the parts model and spatial reasoning.
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Source: Max Planck Institute
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Conclusion

Conclusion

Nuggets:

1 Hybrid Intelligence allows one to leverage di↵erent intelligent systems
(including humans).

2 Auxillary input can be used to improve the performance of a deep
learning vision system.

3 Soar could use its reasoning and interaction capabilities to improve its
perception.

4 Integrating deep learning with Soar.

Coal:

1 To be implemented!
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Conclusion

Human-in-the-loop Performance
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Source: Click-Here CNN [5]
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