# Computationally Efficient Relational Reinforcement Learning

#### Mitchell Keith Bloch

University of Michigan 2260 Hayward Street Ann Arbor, MI. 48109-2121 bazald@umich.edu

May 16-17, 2018

**Research Interest** 

I seek to develop agents that can learn from a reward signal

**Research Interest** 

I seek to develop agents that can learn from a reward signal



**Research Interest** 

I seek to develop agents that can learn from a reward signal





## Blocks World – Objective: Exact



Complete state description visual

- **1** Full representation of the goal presented by the environment
- 2 Variable goals and potentially numbers of blocks each episode
- 8 Relatively complex training goal vs
  - Stack Creating a tower out of all the blocks
  - Unstack Placing all blocks on the table
  - On (a, b) Placing one specific block on top of another
- 4 8 features plus 22 distractor features



Complete state description visual

- **1** Full representation of the goal presented by the environment
- 2 Variable goals and potentially numbers of blocks each episode
- 8 Relatively complex training goal vs
  - Stack Creating a tower out of all the blocks
  - Unstack Placing all blocks on the table
  - On (a, b) Placing one specific block on top of another
- 4 8 features plus 22 distractor features

#### Learning Mechanism

Temporal Difference (TD) methods for Reinforcement Learning (RL) are generally applicable and can support online learning

#### Learning Mechanism

Temporal Difference (TD) methods for Reinforcement Learning (RL) are generally applicable and can support online learning



#### Learning Mechanism

Temporal Difference (TD) methods for Reinforcement Learning (RL) are generally applicable and can support online learning

Sarsa (On Policy)

$$Q(s,a) \stackrel{\alpha}{\leftarrow} r + \gamma Q(s',a')$$

Q-learning (Off policy)

$$Q(s,a) \stackrel{lpha}{\leftarrow} r + \gamma \underset{a' \in \mathcal{A}}{\max} Q(s',a')$$

Greedy-GQ( $\lambda$ )

#### [Maei and Sutton, 2010]

## **Q**-functions

#### TD methods over ...

What is Q(s, a)?

## **Q**-functions

#### TD methods over ...

What is Q(s, a)?

#### Tabular RL

Q(s,a) can map each state-action pair to a unique value called a Q-value

## **Q**-functions

#### TD methods over ...

What is Q(s, a)?

#### Tabular RL

Q(s,a) can map each state-action pair to a unique value called a Q-value

#### Linear Function Approximation

Q(s, a) can map each state-action pair to a sum of *weights* that are shared between different state-action pairs

$$Q(s,a) = \sum_{i=1}^{n} \phi_i(s,a) w_i$$



#### Linear Function Approximation

Where do features,  $\phi_i(s, a)$ , come from?

#### Linear Function Approximation

Where do features,  $\phi_i(s, a)$ , come from?

#### TD Methods

TD methods answer the problem of how to learn over features, but do nothing to answer the problem of where features should come from

#### Linear Function Approximation

Where do features,  $\phi_i(s, a)$ , come from?

#### TD Methods

TD methods answer the problem of how to learn over features, but do nothing to answer the problem of where features should come from

#### Tile Codings

One answer to this problem is to use tile codings to partition the state-action space

| -1.0 | -1.1 | -1.2 | -1.0 | 2.1 | 2.0 | 3.1 | 5.1 |
|------|------|------|------|-----|-----|-----|-----|
| -0.7 | -1.2 | -1.0 | -1.1 | 1.8 | 2.0 | 2.9 | 4.1 |
| -2.9 | -2.8 | -1.0 | -1.1 | 2.0 | 1.9 | 2.9 | 3.2 |
| -4.9 | -3.1 | -1.2 | -0.9 | 2.1 | 2.1 | 2.1 | 2.0 |
| -3.2 | -2.8 | 0.2  | -0.1 | 0.9 | 1.0 | 1.1 | 1.2 |
| -2.1 | -1.8 | 0.0  | 0.1  | 1.0 | 0.9 | 1.1 | 1.0 |
| -1.1 | -0.9 | 0.0  | -0.2 | 0.9 | 1.0 | 1.1 | 0.8 |
| -1.2 | -1.0 | 0.2  | 0.1  | 1.1 | 1.0 | 0.9 | 1.0 |

| -1.0 | -1.1 | -1.2 | -1.0 | 2.1 | 2.0 | 3.1 | 5.1 |
|------|------|------|------|-----|-----|-----|-----|
| -0.7 | -1.2 | -1.0 | -1.1 | 1.8 | 2.0 | 2.9 | 4.1 |
| -2.9 | -2.8 | -1.0 | -1.1 | 2.0 | 1.9 | 2.9 | 3.2 |
| -4.9 | -3.1 | -1.2 | -0.9 | 2.1 | 2.1 | 2.1 | 2.0 |
| -3.2 | -2.8 | 0.2  | -0.1 | 0.9 | 1.0 | 1.1 | 1.2 |
| -2.1 | -1.8 | 0.0  | 0.1  | 1.0 | 0.9 | 1.1 | 1.0 |
| -1.1 | -0.9 | 0.0  | -0.2 | 0.9 | 1.0 | 1.1 | 0.8 |
| -1.2 | -1.0 | 0.2  | 0.1  | 1.1 | 1.0 | 0.9 | 1.0 |

#### Three 8x8 tilings



| -1.0 | -1.1 | -1.2 | -1.0 | 2.1 | 2.0 | 3.1 | 5.1 |
|------|------|------|------|-----|-----|-----|-----|
| -0.7 | -1.2 | -1.0 | -1.1 | 1.8 | 2.0 | 2.9 | 4.1 |
| -2.9 | -2.8 | -1.0 | -1.1 | 2.0 | 1.9 | 2.9 | 3.2 |
| -4.9 | -3.1 | -1.2 | -0.9 | 2.1 | 2.1 | 2.1 | 2.0 |
| -3.2 | -2.8 | 0.2  | -0.1 | 0.9 | 1.0 | 1.1 | 1.2 |
| -2.1 | -1.8 | 0.0  | 0.1  | 1.0 | 0.9 | 1.1 | 1.0 |
| -1.1 | -0.9 | 0.0  | -0.2 | 0.9 | 1.0 | 1.1 | 0.8 |
| -1.2 | -1.0 | 0.2  | 0.1  | 1.1 | 1.0 | 0.9 | 1.0 |

#### Three 8x8 tilings



## Adaptive Tile Coding (ATC)

| -1.0 | -1.1 | -1.2 | -1.0 | 2.1 | 2.0 | 3.1 | 5.1 |
|------|------|------|------|-----|-----|-----|-----|
| -0.7 | -1.2 | -1.0 | -1.1 | 1.8 | 2.0 | 2.9 | 4.1 |
| -2.9 | -2.8 | -1.0 | -1.1 | 2.0 | 1.9 | 2.9 | 3.2 |
| -4.9 | -3.1 | -1.2 | -0.9 | 2.1 | 2.1 | 2.1 | 2.0 |
| -3.2 | -2.8 | 0.2  | -0.1 | 0.9 | 1.0 | 1.1 | 1.2 |
| -2.1 | -1.8 | 0.0  | 0.1  | 1.0 | 0.9 | 1.1 | 1.0 |
| -1.1 | -0.9 | 0.0  | -0.2 | 0.9 | 1.0 | 1.1 | 0.8 |
| -1.2 | -1.0 | 0.2  | 0.1  | 1.1 | 1.0 | 0.9 | 1.0 |

| -1.0 | -1.1 | -1.2 | -1.0 | 2.1 | 2.0 | 3.1 | 5.1 |
|------|------|------|------|-----|-----|-----|-----|
| -0.7 | -1.2 | -1.0 | -1.1 | 1.8 | 2.0 | 2.9 | 4.1 |
| -2.9 | -2.8 | -1.0 | -1.1 | 2.0 | 1.9 | 2.9 | 3.2 |
| -4.9 | -3.1 | -1.2 | -0.9 | 2.1 | 2.1 | 2.1 | 2.0 |
| -3.2 | -2.8 | 0.2  | -0.1 | 0.9 | 1.0 | 1.1 | 1.2 |
| -2.1 | -1.8 | 0.0  | 0.1  | 1.0 | 0.9 | 1.1 | 1.0 |
| -1.1 | -0.9 | 0.0  | -0.2 | 0.9 | 1.0 | 1.1 | 0.8 |
| -1.2 | -1.0 | 0.2  | 0.1  | 1.1 | 1.0 | 0.9 | 1.0 |





#### Adaptive Hierarchical Tile Coding (aHTC)

| -1.0                 | -1.1                 | -1.2              | -1.0                | 2.1               | 2.0               | 3.1               | 5.1               |
|----------------------|----------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|
| -0.7                 | -1.2                 | -1.0              | -1.1                | 1.8               | 2.0               | 2.9               | 4.1               |
| -2.9                 | -2.8                 | -1.0              | -1.1                | 2.0               | 1.9               | 2.9               | 3.2               |
| -4.9                 | -3.1                 | -1.2              | -0.9                | 2.1               | 2.1               | 2.1               | 2.0               |
|                      |                      |                   |                     |                   |                   |                   |                   |
| -3.2                 | -2.8                 | 0.2               | -0.1                | 0.9               | 1.0               | 1.1               | 1.2               |
| -3.2<br>-2.1         | -2.8<br>-1.8         | 0.2<br>0.0        | -0.1<br>0.1         | 0.9<br>1.0        | 1.0<br>0.9        | 1.1<br>1.1        | 1.2<br>1.0        |
| -3.2<br>-2.1<br>-1.1 | -2.8<br>-1.8<br>-0.9 | 0.2<br>0.0<br>0.0 | -0.1<br>0.1<br>-0.2 | 0.9<br>1.0<br>0.9 | 1.0<br>0.9<br>1.0 | 1.1<br>1.1<br>1.1 | 1.2<br>1.0<br>0.8 |



The offers generalization for states that share a tile

## Implementation: *k*-Dimensional Tries (*k*-d Tries)

Typical Use

Efficient English dictionary storage and lookup



## Implementation: *k*-Dimensional Tries (*k*-d Tries)

Typical Use

Efficient English dictionary storage and lookup

My Use

Can also be used for efficient representation of an ATC or HTC



## Implementation: *k*-Dimensional Tries (*k*-d Tries)

Typical Use

Efficient English dictionary storage and lookup

My Use

Can also be used for efficient representation of an ATC or HTC

| -1.0                 | -1.1                 | -1.2              | -1.0                | 2.1               | 2.0               | 3.1               | 5.1               |
|----------------------|----------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|
| -0.7                 | -1.2                 | -1.0              | -1.1                | 1.8               | 2.0               | 2.9               | 4.1               |
| -2.9                 | -2.8                 | -1.0              | -1.1                | 2.0               | 1.9               | 2.9               | 3.2               |
| -4.9                 | -3.1                 | -1.2              | -0.9                | 2.1               | 2.1               | 2.1               | 2.0               |
|                      |                      |                   |                     |                   |                   |                   |                   |
| -3.2                 | -2.8                 | 0.2               | -0.1                | 0.9               | 1.0               | 1.1               | 1.2               |
| -3.2<br>-2.1         | -2.8<br>-1.8         | 0.2<br>0.0        | -0.1<br>0.1         | 0.9<br>1.0        | 1.0<br>0.9        | 1.1<br>1.1        | 1.2<br>1.0        |
| -3.2<br>-2.1<br>-1.1 | -2.8<br>-1.8<br>-0.9 | 0.2<br>0.0<br>0.0 | -0.1<br>0.1<br>-0.2 | 0.9<br>1.0<br>0.9 | 1.0<br>0.9<br>1.0 | 1.1<br>1.1<br>1.1 | 1.2<br>1.0<br>0.8 |



- Less refined tilings correspond to conjunctions of few features
- More refined tilings correspond to conjunctions of many features
- The most refined tilings correspond to *fringe* nodes i.e. candidate conjunctions for inclusion in the value function

- Less refined tilings correspond to conjunctions of few features
- More refined tilings correspond to conjunctions of many features
- The most refined tilings correspond to *fringe* nodes i.e. candidate conjunctions for inclusion in the value function



- Less refined tilings correspond to conjunctions of few features
- More refined tilings correspond to conjunctions of many features
- The most refined tilings correspond to *fringe* nodes i.e. candidate conjunctions for inclusion in the value function



- Less refined tilings correspond to conjunctions of few features
- More refined tilings correspond to conjunctions of many features
- The most refined tilings correspond to *fringe* nodes i.e. candidate conjunctions for inclusion in the value function



## Adaptive k-d Trie Representation



Feature 8  
$$\neg$$
clear( $a$ )





in a Rete for efficient RRL implementation













Criteria

- Cumulative Absolute Temporal Difference Error (CATDE) Maximal error accumulation
  - Focus on regions of high activity and error.
  - Track TD error experienced at each leaf in the value function.
  - The nodes with highest error are eligible for refinement when their features match.
- **2** Policy Maximal change in  $\pi(s, a)$ 
  - Focus on modifying policy (Whiteson 2007)
  - Choose features which maximize the change in the greedy set of actions.
- **3** Value Maximal change in Q(s, a)
  - Focus on improving value estimates (Whiteson 2007)
  - Choose features which maximize value spread on refinement.

## **Exact** with Refinement Only – No Distractors



Mitchell Keith Bloch (University of Michigan)

## **Exact** with Refinement Only – With Distractors

Learning Value criterion Average Return Per Episode does best with -50distractors -100 Number of weights skyrockets -150 Policy criterion CATDE RNI -200Policy RND performance too Value RND -250low to appear 10.000 20.000 30.000 50.000 40.000 Step Number Average Return Per Episode & Wall Clock Time Per Step

| Criterion at 50,000 | ARtPE | WCIPS  | # Weights |
|---------------------|-------|--------|-----------|
| CATDE               | -4.93 | 18.8ms | 1,487.8   |
| Policy Criterion    | -639  | 21.7ms | 1,318.4   |
| Value Criterion     | -4.83 | 19.0ms | 1,459.5   |

## **Exact** with Rerefinement – No Distractors



Mitchell Keith Bloch (University of Michigan)

## **Exact** with Rerefinement – With Distractors

- Until you include distractors – then value does best
- Number of weights persistent in the system is low due to thrashing
- Fast execution as a result of few weights



#### Average Return Per Episode & Wall Clock Time Per Step

| Criterion at 50,000 | ARtPE | WCTPS  | # Weights |
|---------------------|-------|--------|-----------|
| CATDE               | -37.3 | 3.27ms | 7.58      |
| Policy Criterion    | -104  | 1.79ms | 3.15      |
| Value Criterion     | -10.9 | 2.20ms | 4.75      |

Mitchell Keith Bloch (University of Michigan)

## **Exact** with Rerefinement

#### Functionality So Far

- Demonstrated efficacy in absence of distractors
- Demonstrated computationally efficient refinement and rerefinement

## **Exact** with Rerefinement

#### Functionality So Far

- Demonstrated efficacy in absence of distractors
- Demonstrated computationally efficient refinement and rerefinement

#### Issues

- Poor quality of learning with distractors
- Incomplete convergence without distractors
- No convergence with distractors

## **Exact** with Rerefinement

#### Functionality So Far

- Demonstrated efficacy in absence of distractors
- Demonstrated computationally efficient refinement and rerefinement

#### Issues

- Poor quality of learning with distractors
- Incomplete convergence without distractors
- No convergence with distractors

#### What's Next

- Demonstrate flexibility of the architecture
- Blacklists
- Boost
- Concrete

## **Exact** with Rerefinement and Blacklists – No Dist.



Mitchell Keith Bloch (University of Michigan)

## **Exact** with Rerefinement and Blacklists - w/ Dist.

- Works poorly with distractors
- Best features likely to be tried and blacklisted first
- Converge on worst value function structure



#### Average Return Per Episode & Wall Clock Time Per Step

| Criterion at 50,000 | ARtPE | WCTPS  | # Weights |
|---------------------|-------|--------|-----------|
| CATDE               | -407  | 4.72ms | 30.9      |
| Policy Criterion    | –187  | 8.55ms | 87.1      |
| Value Criterion     | –159  | 5.55ms | 44.7      |

## **Exact** with Rerefinement and Boost – No Dist.

- Gradually increase the likelihood of reselection instead

   opposite of blacklists
- Generally a little slower to converge than when using blacklists



#### Average Return Per Episode & Wall Clock Time Per Step

| Criterion at 50,000 | ARtPE | WCTPS  | # Weights |
|---------------------|-------|--------|-----------|
| CATDE               | -4.14 | 1.77ms | 22.7      |
| Policy Criterion    | -3.95 | 2.22ms | 24.8      |
| Value Criterion     | -4.78 | 1.56ms | 15.1      |

## **Exact** with Rerefinement and Boost – w/ Dist.



## Exact with Reref. & Boost & Concrete - No Dist.



Mitchell Keith Bloch (University of Michigan)

## **Exact** with Reref. & Boost & Concrete – w/ Dist.



## **Exact** with the Value Criterion – No Dist.

- Unrestricted rerefinement does the best between 1,000 and 3,000 steps
- Rerefinement with boost and concrete overtakes it from 3,000 steps on



- N No rerefinement
- U Unrestricted rerefinement
- B Blacklists
- O bOost
- C boost with Concrete

## **Exact** with the Value Criterion – w/ Dist.

- Unrestricted rerefinement does the best between 1,000 and 2,000 steps
- Rerefinement with boost and concrete overtakes it from 2,000 steps on



- N No rerefinement
- U Unrestricted rerefinement
- B Blacklists
- O bOost
- C boost with Concrete

# Policy Optimality Scaling

- The policy learned by my agents with a general solution to exact with variable target configurations, compared to
- Optimal calculated with A\* and
- An expected number of steps for a policy moving all blocks to the table and then into place

#### As Blocks Increase 140 120 100 Number of Steps 80 60 40 Table Carli-RRI 20 Optimal 10 20 30 40 50 60 70 Number of Blocks

#### Mitchell Keith Bloch (University of Michigan)

# Nuggets and Coal

#### Nuggets

- Successfully embedded an adaptive Hierarchical Tile Coding (aHTC) in a Rete
- 2 Demonstrated architectural flexibility using three different refinement criteria in addition to rerefinement, blacklist, boost, and concrete mechanisms
- 3 A general policy for exact that scales for arbitrary numbers of blocks

#### Coal

- Computational costs to execute policy are high for hundreds of blocks
- Policy is only approximately optimal, but problem is NP-hard
- I've been a student at U-M almost as long as Kenan Thompson has been a cast member of SNL

Hamid Reza Maei and Richard S Sutton.

Gq ( $\lambda$ ): A general gradient algorithm for temporal-difference prediction learning with eligibility traces.

In *Proceedings of the Third Conference on Artificial General Intelligence*, volume 1, pages 91–96, 2010.