
Computationally Efficient

Relational Reinforcement Learning

Mitchell Keith Bloch

University of Michigan
2260 Hayward Street

Ann Arbor, MI. 48109-2121
bazald@umich.edu

May 16-17, 2018

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL

http://bazald.com
http://www.umich.edu
mailto:bazald@umich.edu
http://bazald.com
http://www.umich.edu


The Problem from 10,000 Feet

I seek to develop agents that can learn from a reward signal
Research Interest

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 1 / 27

http://bazald.com
http://www.umich.edu


The Problem from 10,000 Feet

I seek to develop agents that can learn from a reward signal
Research Interest

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 1 / 27

http://bazald.com
http://www.umich.edu


The Problem from 10,000 Feet

I seek to develop agents that can learn from a reward signal
Research Interest

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 1 / 27

http://bazald.com
http://www.umich.edu


Blocks World – Objective: Exact

Table

A

D

C B

E

Blocks

Table

B

A

C

D E

Goal for Episode #1

Complete state description visual

1 Full representation of the goal presented by the environment
2 Variable goals and potentially numbers of blocks each episode
3 Relatively complex training goal vs

Stack – Creating a tower out of all the blocks
Unstack – Placing all blocks on the table
On(a,b) – Placing one specific block on top of another

4 8 features plus 22 distractor features

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 2 / 27

http://bazald.com
http://www.umich.edu


Blocks World – Objective: Exact

Table

A

D

C B

E

Blocks

Table

C

E A

D

C

B

Goal for Episode #2

Complete state description visual

1 Full representation of the goal presented by the environment
2 Variable goals and potentially numbers of blocks each episode
3 Relatively complex training goal vs

Stack – Creating a tower out of all the blocks
Unstack – Placing all blocks on the table
On(a,b) – Placing one specific block on top of another

4 8 features plus 22 distractor features

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 2 / 27

http://bazald.com
http://www.umich.edu


Temporal Difference Learning

Temporal Difference (TD) methods for Reinforcement Learning (RL)
are generally applicable and can support online learning

Learning Mechanism

Q(s, a) α← r + γQ(s′, a′)

Sarsa (On Policy)

Q(s, a) α← r + γmax
a′∈A

Q(s′, a′)

Q-learning (Off policy)

[Maei and Sutton, 2010]

Greedy-GQ(λ)

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 3 / 27

http://bazald.com
http://www.umich.edu


Temporal Difference Learning

Temporal Difference (TD) methods for Reinforcement Learning (RL)
are generally applicable and can support online learning

Learning Mechanism

Q(s, a) α← r + γQ(s′, a′)

Sarsa (On Policy)

Q(s, a) α← r + γmax
a′∈A

Q(s′, a′)

Q-learning (Off policy)

[Maei and Sutton, 2010]

Greedy-GQ(λ)

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 3 / 27

http://bazald.com
http://www.umich.edu


Temporal Difference Learning

Temporal Difference (TD) methods for Reinforcement Learning (RL)
are generally applicable and can support online learning

Learning Mechanism

Q(s, a) α← r + γQ(s′, a′)

Sarsa (On Policy)

Q(s, a) α← r + γmax
a′∈A

Q(s′, a′)

Q-learning (Off policy)

[Maei and Sutton, 2010]

Greedy-GQ(λ)

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 3 / 27

http://bazald.com
http://www.umich.edu


Q-functions

What is Q(s, a)?
TD methods over . . .

Q(s, a) can map each state-action pair to a unique value called a
Q-value

Tabular RL

Q(s, a) can map each state-action pair to a sum of weights that are
shared between different state-action pairs

Q(s, a) =
n∑

i=1

φi(s, a)wi

Linear Function Approximation

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 4 / 27

http://bazald.com
http://www.umich.edu


Q-functions

What is Q(s, a)?
TD methods over . . .

Q(s, a) can map each state-action pair to a unique value called a
Q-value

Tabular RL

Q(s, a) can map each state-action pair to a sum of weights that are
shared between different state-action pairs

Q(s, a) =
n∑

i=1

φi(s, a)wi

Linear Function Approximation

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 4 / 27

http://bazald.com
http://www.umich.edu


Q-functions

What is Q(s, a)?
TD methods over . . .

Q(s, a) can map each state-action pair to a unique value called a
Q-value

Tabular RL

Q(s, a) can map each state-action pair to a sum of weights that are
shared between different state-action pairs

Q(s, a) =
n∑

i=1

φi(s, a)wi

Linear Function Approximation

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 4 / 27

http://bazald.com
http://www.umich.edu


Features?

Where do features, φi(s, a), come from?

Linear Function Approximation

TD methods answer the problem of how to learn over features, but
do nothing to answer the problem of where features should come
from

TD Methods

One answer to this problem is to use tile codings to partition the
state-action space

Tile Codings

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 5 / 27

http://bazald.com
http://www.umich.edu


Features?

Where do features, φi(s, a), come from?

Linear Function Approximation

TD methods answer the problem of how to learn over features, but
do nothing to answer the problem of where features should come
from

TD Methods

One answer to this problem is to use tile codings to partition the
state-action space

Tile Codings

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 5 / 27

http://bazald.com
http://www.umich.edu


Features?

Where do features, φi(s, a), come from?

Linear Function Approximation

TD methods answer the problem of how to learn over features, but
do nothing to answer the problem of where features should come
from

TD Methods

One answer to this problem is to use tile codings to partition the
state-action space

Tile Codings

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 5 / 27

http://bazald.com
http://www.umich.edu


Tile Coding

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

One 8x8 tiling

Three 8x8 tilings

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-1.0 -1.1

-1.2 -0.9

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

The offers generalization for states that share a tile
Learning Efficiency

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 6 / 27

http://bazald.com
http://www.umich.edu


Tile Coding

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

One 8x8 tiling Three 8x8 tilings

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-1.0 -1.1

-1.2 -0.9

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

The offers generalization for states that share a tile
Learning Efficiency

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 6 / 27

http://bazald.com
http://www.umich.edu


Tile Coding

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

One 8x8 tiling Three 8x8 tilings

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

Adaptive Tile
Coding (ATC)

The offers generalization for states that share a tile
Learning Efficiency

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 6 / 27

http://bazald.com
http://www.umich.edu


Tile Coding

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

One 8x8 tiling Three 8x8 tilings

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

Adaptive
Hierarchical Tile
Coding (aHTC)

The offers generalization for states that share a tile
Learning Efficiency

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 6 / 27

http://bazald.com
http://www.umich.edu


Tile Coding

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

One 8x8 tiling Three 8x8 tilings

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

Adaptive
Hierarchical Tile
Coding (aHTC)

The offers generalization for states that share a tile
Learning Efficiency

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 6 / 27

http://bazald.com
http://www.umich.edu


Implementation: k -Dimensional Tries (k -d Tries)

Efficient English dictionary
storage and lookup

Typical Use

Can also be used for efficient
representation of an ATC or HTC

My Use

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

∧

A

N

T

B

E

C

A

R T

4

-4

2 7

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 7 / 27

http://bazald.com
http://www.umich.edu


Implementation: k -Dimensional Tries (k -d Tries)

Efficient English dictionary
storage and lookup

Typical Use

Can also be used for efficient
representation of an ATC or HTC

My Use

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

4

-4

2 7

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 7 / 27

http://bazald.com
http://www.umich.edu


Implementation: k -Dimensional Tries (k -d Tries)

Efficient English dictionary
storage and lookup

Typical Use

Can also be used for efficient
representation of an ATC or HTC

My Use

-1.0 -1.1 -1.2 -1.0

-0.7 -1.2 -1.0 -1.1

-2.9

-4.9

-2.8

-3.1

-1.0 -1.1

-1.2 -0.9

5.1

4.1

3.1

2.9

2.9 3.2

2.1 2.0

1.8 2.0

2.0 1.9

2.1 2.1 2.1 2.0

-3.2 -2.8

-2.1 -1.8

-1.1 -0.9

-1.2 -1.0

0.2 -0.1

0.0 0.1

0.0 -0.2

0.2 0.1

0.9 1.0 1.1 1.2

1.0 0.9 1.1 1.0

0.9 1.0 1.1 0.8

1.1 1.0 0.9 1.0

-1

4

-2

3

-7

4

5

2

-4 1

4

-4

2 7

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 7 / 27

http://bazald.com
http://www.umich.edu


Adaptive Tile Coding

Less refined tilings correspond to conjunctions of few features
More refined tilings correspond to conjunctions of many features
The most refined tilings correspond to fringe nodes
i.e. candidate conjunctions for inclusion in the value function

ATC/HTC Trie Mapping

aHTC View

Trie View
w0

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 8 / 27

http://bazald.com
http://www.umich.edu


Adaptive Tile Coding

Less refined tilings correspond to conjunctions of few features
More refined tilings correspond to conjunctions of many features
The most refined tilings correspond to fringe nodes
i.e. candidate conjunctions for inclusion in the value function

ATC/HTC Trie Mapping

aHTC View

w0
f1.1, f1.2, f2.1,
f2.2, f3.1, f3.2

Trie View
w0

f1.1 f1.2 f2.1 f2.2 f3.1 f3.2

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 8 / 27

http://bazald.com
http://www.umich.edu


Adaptive Tile Coding

Less refined tilings correspond to conjunctions of few features
More refined tilings correspond to conjunctions of many features
The most refined tilings correspond to fringe nodes
i.e. candidate conjunctions for inclusion in the value function

ATC/HTC Trie Mapping

aHTC View

w0 + w1.1
f2.1a, f2.2a,
f3.1b, f3.2b

w0 + w1.2,
f2.1b, f2.2b,
f3.1b, f3.2b

Trie View
w0

w1.1 w1.2

f2.1a f2.2a f3.1a f3.2a f2.1b f2.2b f3.1b f3.2b

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 8 / 27

http://bazald.com
http://www.umich.edu


Adaptive Tile Coding

Less refined tilings correspond to conjunctions of few features
More refined tilings correspond to conjunctions of many features
The most refined tilings correspond to fringe nodes
i.e. candidate conjunctions for inclusion in the value function

ATC/HTC Trie Mapping

aHTC View

w0 + w1.2,
f2.1b, f2.2b,
f3.1b, f3.2b

w0 + w1.1
+w3.1,

f2.1c, f2.2c

w0 + w1.1
w3.2,

f2.1d, f2.2d

Trie View
w0

w1.1 w1.2

f2.1b f2.2b f3.1b f3.2bw3.1 w3.2

f2.1c f2.2c f2.1d f2.2d

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 8 / 27

http://bazald.com
http://www.umich.edu


Adaptive k -d Trie Representation

x < 0.5

x < 0.25 x ≥ 0.25 y < 0.5 y ≥ 0.5

x ≥ 0.5

y < 0.5

x < 0.75 x ≥ 0.75 y < 0.25 y ≥ 0.25

y ≥ 0.5

x < 0.75 x ≥ 0.75 y < 0.75 y ≥ 0.75

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 9 / 27

http://bazald.com
http://www.umich.edu


Relational Representations

First Order Logical Decison Tree (FOLDT)
Concept

k -d Tries do not effectively support FOLDT
implementation due to variable binding
problem!

Problem

I observed that a FOLDT could be embedded
in a Rete for efficient RRL implementation

Solution

on(b, a)
Feature 2

clear(c)
Feature 5

¬clear(a)
Feature 8

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 10 / 27

http://bazald.com
http://www.umich.edu


Relational Representations

First Order Logical Decison Tree (FOLDT)
Concept

k -d Tries do not effectively support FOLDT
implementation due to variable binding
problem!

Problem

I observed that a FOLDT could be embedded
in a Rete for efficient RRL implementation

Solution

on(b, a)
Feature 2

clear(c)
Feature 5

¬clear(a)
Feature 8

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 10 / 27

http://bazald.com
http://www.umich.edu


Relational Representations

First Order Logical Decison Tree (FOLDT)
Concept

k -d Tries do not effectively support FOLDT
implementation due to variable binding
problem!

Problem

I observed that a FOLDT could be embedded
in a Rete for efficient RRL implementation

Solution

on(b, a)
Feature 2

clear(c)
Feature 5

¬clear(a)
Feature 8

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 10 / 27

http://bazald.com
http://www.umich.edu


Relational Representations

First Order Logical Decison Tree (FOLDT)
Concept

k -d Tries do not effectively support FOLDT
implementation due to variable binding
problem!

Problem

I observed that a FOLDT could be embedded
in a Rete for efficient RRL implementation

Solution

on(b, a)
Feature 2

clear(c)
Feature 5

¬clear(a)
Feature 8

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 10 / 27

http://bazald.com
http://www.umich.edu


Relational Representations

First Order Logical Decison Tree (FOLDT)
Concept

k -d Tries do not effectively support FOLDT
implementation due to variable binding
problem!

Problem

I observed that a FOLDT could be embedded
in a Rete for efficient RRL implementation

Solution

on(b, a)
Feature 2

clear(c)
Feature 5

¬clear(a)
Feature 8

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 10 / 27

http://bazald.com
http://www.umich.edu


Relational Representations

First Order Logical Decison Tree (FOLDT)
Concept

k -d Tries do not effectively support FOLDT
implementation due to variable binding
problem!

Problem

I observed that a FOLDT could be embedded
in a Rete for efficient RRL implementation

Solution

on(b, a)
Feature 2

clear(c)
Feature 5

¬clear(a)
Feature 8

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 10 / 27

http://bazald.com
http://www.umich.edu


Adaptive Rete Representation

matches(
<dest-stack>,
<goal-stack>)

matches(
<stack>,

<goal-stack>)

matches-top(
<dest-stack>)

is-table(
<dest-stack>)

∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 11 / 27

http://bazald.com
http://www.umich.edu


Adaptive Rete Representation

matches(
<dest-stack>,
<goal-stack>)

matches(
<stack>,

<goal-stack>)

matches-top(
<dest-stack>)

is-table(
<dest-stack>)

∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 11 / 27

http://bazald.com
http://www.umich.edu


Adaptive Rete Representation

matches(
<dest-stack>,
<goal-stack>)

matches(
<stack>,

<goal-stack>)

matches-top(
<dest-stack>)

is-table(
<dest-stack>)

∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 11 / 27

http://bazald.com
http://www.umich.edu


Adaptive Rete Representation

matches(
<dest-stack>,
<goal-stack>)

matches(
<stack>,

<goal-stack>)

matches-top(
<dest-stack>)

is-table(
<dest-stack>)

∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 11 / 27

http://bazald.com
http://www.umich.edu


Adaptive Rete Representation

matches(
<dest-stack>,
<goal-stack>)

matches(
<stack>,

<goal-stack>)

matches-top(
<dest-stack>)

is-table(
<dest-stack>)

∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join ∃ Join ¬ Join

∃ Join ¬ Join ∃ Join ¬ Join

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 11 / 27

http://bazald.com
http://www.umich.edu


Exploration of Refinement Criteria

1 Cumulative Absolute Temporal Difference Error (CATDE) –
Maximal error accumulation

Focus on regions of high activity and error.
Track TD error experienced at each leaf in the value function.
The nodes with highest error are eligible for refinement when
their features match.

2 Policy – Maximal change in π(s, a)
Focus on modifying policy (Whiteson 2007)
Choose features which maximize the change in the greedy set of
actions.

3 Value – Maximal change in Q(s, a)
Focus on improving value estimates (Whiteson 2007)
Choose features which maximize value spread on refinement.

Criteria

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 12 / 27

http://bazald.com
http://www.umich.edu


Exact with Refinement Only – No Distractors

“Refinement only”
gives a baseline
All criteria okay
with no distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RNN
Policy RNN
Value RNN

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −4.06 1.38ms 23.0
Policy Criterion −3.84 0.91ms 24.7
Value Criterion −3.97 1.33ms 25.6

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 13 / 27

http://bazald.com
http://www.umich.edu


Exact with Refinement Only – With Distractors

Value criterion
does best with
distractors
Number of weights
skyrockets
Policy criterion
performance too
low to appear 0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RND
Policy RND
Value RND

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −4.93 18.8ms 1,487.8
Policy Criterion −639 21.7ms 1,318.4
Value Criterion −4.83 19.0ms 1,459.5

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 14 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement – No Distractors

CATDE does best
with unrestricted
rerefinement
Policy does not
converge

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RUN
Policy RUN
Value RUN

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −5.03 1.65ms 16.3
Policy Criterion −27.2 1.06ms 4.1
Value Criterion −6.13 1.10ms 5.94

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 15 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement – With Distractors

Until you include
distractors – then
value does best
Number of weights
persistent in the
system is low due
to thrashing
Fast execution as a
result of few
weights

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RUD
Policy RUD
Value RUD

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −37.3 3.27ms 7.58
Policy Criterion −104 1.79ms 3.15
Value Criterion −10.9 2.20ms 4.75

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 16 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement

Demonstrated efficacy in absence of distractors
Demonstrated computationally efficient refinement and
rerefinement

Functionality So Far

Poor quality of learning with distractors
Incomplete convergence without distractors
No convergence with distractors

Issues

Demonstrate flexibility of the architecture
Blacklists
Boost
Concrete

What’s Next

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 17 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement

Demonstrated efficacy in absence of distractors
Demonstrated computationally efficient refinement and
rerefinement

Functionality So Far

Poor quality of learning with distractors
Incomplete convergence without distractors
No convergence with distractors

Issues

Demonstrate flexibility of the architecture
Blacklists
Boost
Concrete

What’s Next

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 17 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement

Demonstrated efficacy in absence of distractors
Demonstrated computationally efficient refinement and
rerefinement

Functionality So Far

Poor quality of learning with distractors
Incomplete convergence without distractors
No convergence with distractors

Issues

Demonstrate flexibility of the architecture
Blacklists
Boost
Concrete

What’s Next

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 17 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement and Blacklists – No Dist.

Most obvious
strategy to avoid
thrashing
Works fairly well in
the absence of
distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RBN
Policy RBN
Value RBN

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −3.94 1.51ms 26.5
Policy Criterion −4.04 1.20ms 25.9
Value Criterion −4.13 1.41ms 26.8

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 18 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement and Blacklists – w/ Dist.

Works poorly with
distractors
Best features likely
to be tried and
blacklisted first
Converge on worst
value function
structure 0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RBD
Policy RBD
Value RBD

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −407 4.72ms 30.9
Policy Criterion −187 8.55ms 87.1
Value Criterion −159 5.55ms 44.7

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 19 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement and Boost – No Dist.

Gradually increase
the likelihood of
reselection instead
– opposite of
blacklists
Generally a little
slower to converge
than when using
blacklists

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RON
Policy RON
Value RON

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −4.14 1.77ms 22.7
Policy Criterion −3.95 2.22ms 24.8
Value Criterion −4.78 1.56ms 15.1

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 20 / 27

http://bazald.com
http://www.umich.edu


Exact with Rerefinement and Boost – w/ Dist.

Much slower with
distractors
However, now the
value function
comes close to
converging

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE ROD
Policy ROD
Value ROD

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −187 12.4 ms 73.2
Policy Criterion −231 33.5 ms 218
Value Criterion −7.42 6.91ms 26.2

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 21 / 27

http://bazald.com
http://www.umich.edu


Exact with Reref. & Boost & Concrete – No Dist.

Value criterion
gives best
performance
Lowest CPU cost

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RCN
Policy RCN
Value RCN

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −3.99 0.605ms 23.6
Policy Criterion −3.91 0.645ms 24.0
Value Criterion −3.71 0.612ms 26.4

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 22 / 27

http://bazald.com
http://www.umich.edu


Exact with Reref. & Boost & Concrete – w/ Dist.

Value gives best
performance even
with distractors
Does so with fewer
weights and lower
CPU cost

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RCD
Policy RCD
Value RCD

Learning

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −7.60 19.6ms 596
Policy Criterion −1,100 10.2ms 238
Value Criterion −3.97 12.3ms 284

Average Return Per Episode & Wall Clock Time Per Step

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 23 / 27

http://bazald.com
http://www.umich.edu


Exact with the Value Criterion – No Dist.

Unrestricted
rerefinement does
the best between
1,000 and 3,000
steps
Rerefinement with
boost and concrete
overtakes it from
3,000 steps on

0 2,000 4,000 6,000 8,000 10,000

Step Number

−50

−40

−30

−20

−10

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

Value RNN
Value RUN
Value RBN
Value RON
Value RCN

Learning

N – No rerefinement
U – Unrestricted rerefinement
B – Blacklists
O – bOost
C – boost with Concrete

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 24 / 27

http://bazald.com
http://www.umich.edu


Exact with the Value Criterion – w/ Dist.

Unrestricted
rerefinement does
the best between
1,000 and 2,000
steps
Rerefinement with
boost and concrete
overtakes it from
2,000 steps on

0 2,000 4,000 6,000 8,000 10,000

Step Number

−50

−40

−30

−20

−10

0

C
um

ul
at

iv
e

R
ew

ar
d

/#
E

pi
so

de
s

Value RND
Value RUD
Value RBD
Value ROD
Value RCD

Learning

N – No rerefinement
U – Unrestricted rerefinement
B – Blacklists
O – bOost
C – boost with Concrete

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 25 / 27

http://bazald.com
http://www.umich.edu


Policy Optimality Scaling

The policy learned
by my agents with
a general solution
to exact with
variable target
configurations,
compared to
Optimal calculated
with A∗ and
An expected
number of steps for
a policy moving all
blocks to the table
and then into place

0 10 20 30 40 50 60 70

Number of Blocks

0

20

40

60

80

100

120

140

N
um

be
ro

fS
te

ps
Table
Carli-RRL
Optimal

As Blocks Increase

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 26 / 27

http://bazald.com
http://www.umich.edu


Nuggets and Coal

1 Successfully embedded an
adaptive Hierarchical Tile
Coding (aHTC) in a Rete

2 Demonstrated architectural
flexibility using three
different refinement criteria
in addition to rerefinement,
blacklist, boost, and
concrete mechanisms

3 A general policy for exact
that scales for arbitrary
numbers of blocks

Nuggets

1 Computational costs to
execute policy are high for
hundreds of blocks

2 Policy is only approximately
optimal, but problem is
NP-hard

3 I’ve been a student at U-M
almost as long as Kenan
Thompson has been a cast
member of SNL

Coal

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 27 / 27

http://bazald.com
http://www.umich.edu


Hamid Reza Maei and Richard S Sutton.
Gq (λ): A general gradient algorithm for temporal-difference
prediction learning with eligibility traces.
In Proceedings of the Third Conference on Artificial General
Intelligence, volume 1, pages 91–96, 2010.

Mitchell Keith Bloch (University of Michigan) Computationally Efficient RRL 27 / 27

http://bazald.com
http://www.umich.edu

	References

