Metareasoning for Comprehensive Troubleshooting

James Kirk

james.kirk@cic.iqmri.org

45th Soar Workshop

May 5, 2025

Comprehensive Troubleshooting (CTS)

- CTS goes beyond routine troubleshooting, replicating expert human-level skills
 - In "real world" troubleshooting complex, novel problems and faults occur
 - Requires wide range of knowledge and cognitive skills, including metareasoning

SOA limitations

- Pre-planned responses (checklists, fault analysis trees) cannot address unpredicted complex issues
- DL/ML strategies effective for limited TS (e.g., fault classification), but not for issues outside training data
- Cognitive architectures support metareseaoning but limited in explorations to narrow domain/task specific scenarios

Requirements for CTS

- Capabilities/knowledge to identify, diagnose, and address novel, complex, unseen issues/faults
- Need inexpensive/reliable methods for acquiring domain-specific TS knowledge
- Need metareasoning and control knowledge to guide CTS

Metacognition for Self-reliability

- Comprehensive TS is essential for reliability autonomy
 - Must identify and address unanticipated problems that inevitably occur
- Plan: Leverage LLMs and Cognitive Architectures
 - Build on cognitive capabilities to support TS steps
 - Develop metareasoning for control
 - Use LLMs to provide required knowledge
 - From generic system model, TS, and metareasoning knowledge: learn specialized domain-specific knowledge to achieve expert-level CTS

Knowledge and Processes for CTS

Metareasoning for CTS

Innovations

- Leverage recent LLM advancement as source of domain-specific troubleshooting and metareasoning knowledge
- Leverage our prior work on accessing and verifying task knowledge from LLMs for cognitive agents and current working on orchestration with LLMs
- Build on existing CA capabilities, skills orchestrated via metareasoning and LLM

Objectives

- Acquire domain-specific troubleshooting knowledge for CTS
- Acquire domain-specific metareasoning knowledge to orchestrate the usage of cognitive capabilities and access of knowledge during CTS
- Learn expert-level CTS through the integration of knowledge and capabilities

Year 1

- Develop TS processes in Soar
- Explore simple CTS problems
- Integrate with simulator(s)

Year 2

- Exploit LLMs for specializing metareasoning and TS knowledge
- Leverage ongoing working using LangGraph for Metareasoning orchestration
- Explore more complex CTS problems

Year 3

- Leverage Soar learning capabilities to learn long-term knowledge from specialized metareasoning and TS knowledge
- Perform experiments on complex CTS problems

- We will evaluate the agents CTS abilities in a simulation environment
- Initial investigations with simple simulation environment, possibly drawn from other work (Factorio?)
- Planning to use a ship-engine simulator, such as VIRTUAL ENGINE ROOM 7 (VER7) →
- Evaluation Metrics
 - **Solution performance:** percentage of problems it successfully diagnoses and solves
 - **Efficiency:** time, agent processing costs, and monetary cost of experiments (tokens)
 - Transfer: ability of the agent to use knowledge learned from past experiences to solve new troubleshooting problems more efficiently/directly

Nuggets

- · Grant awarded!
- Synergy with other projects, continuing exploration of LLM usage

Coal

 Haven't started yet, waiting to receive funding, hopefully in next couple months...

