"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"- 线性回归\n",
"- 逻辑回归\n",
"- 决策树\n",
"- SVM\n",
"- 朴素贝叶斯\n",
"---\n",
"- K最近邻算法\n",
"- K均值算法\n",
"- 随机森林算法\n",
"- 降维算法\n",
"- Gradient Boost 和 Adaboost 算法\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"> # 使用sklearn做线性回归\n",
"***\n",
"\n",
"王成军\n",
"\n",
"wangchengjun@nju.edu.cn\n",
"\n",
"计算传播网 http://computational-communication.com"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# 线性回归\n",
"- 通常用于估计连续性变量的实际数值(房价、呼叫次数、总销售额等)。\n",
"- 通过拟合最佳直线来建立自变量X和因变量Y的关系。\n",
"- 这条最佳直线叫做回归线,并且用 $Y= \\beta *X + C$ 这条线性等式来表示。\n",
"- 系数 a 和 b 可以通过最小二乘法获得"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.17.1\n"
]
}
],
"source": [
"%matplotlib inline\n",
"\n",
"from sklearn import datasets\n",
"from sklearn import linear_model\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.metrics import classification_report\n",
"from sklearn.preprocessing import scale\n",
"\n",
"import sklearn\n",
"print sklearn.__version__"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"# boston data\n",
"boston = datasets.load_boston()\n",
"y = boston.target\n",
"X = boston.data"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'__class__ __cmp__ __contains__ __delattr__ __delitem__ __dict__ __doc__ __eq__ __format__ __ge__ __getattr__ __getattribute__ __getitem__ __gt__ __hash__ __init__ __iter__ __le__ __len__ __lt__ __module__ __ne__ __new__ __reduce__ __reduce_ex__ __repr__ __setattr__ __setitem__ __setstate__ __sizeof__ __str__ __subclasshook__ __weakref__ clear copy fromkeys get has_key items iteritems iterkeys itervalues keys pop popitem setdefault update values viewitems viewkeys viewvalues'"
]
},
"execution_count": 117,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"' '.join(dir(boston))"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',\n",
" 'TAX', 'PTRATIO', 'B', 'LSTAT'], \n",
" dtype='|S7')"
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"boston['feature_names']"
]
},
{
"cell_type": "code",
"execution_count": 238,
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: boston.target R-squared: 0.741\n",
"Model: OLS Adj. R-squared: 0.734\n",
"Method: Least Squares F-statistic: 108.1\n",
"Date: Sun, 08 May 2016 Prob (F-statistic): 6.95e-135\n",
"Time: 20:14:27 Log-Likelihood: -1498.8\n",
"No. Observations: 506 AIC: 3026.\n",
"Df Residuals: 492 BIC: 3085.\n",
"Df Model: 13 \n",
"Covariance Type: nonrobust \n",
"===================================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"-----------------------------------------------------------------------------------\n",
"Intercept 36.4911 5.104 7.149 0.000 26.462 46.520\n",
"boston.data[0] -0.1072 0.033 -3.276 0.001 -0.171 -0.043\n",
"boston.data[1] 0.0464 0.014 3.380 0.001 0.019 0.073\n",
"boston.data[2] 0.0209 0.061 0.339 0.735 -0.100 0.142\n",
"boston.data[3] 2.6886 0.862 3.120 0.002 0.996 4.381\n",
"boston.data[4] -17.7958 3.821 -4.658 0.000 -25.302 -10.289\n",
"boston.data[5] 3.8048 0.418 9.102 0.000 2.983 4.626\n",
"boston.data[6] 0.0008 0.013 0.057 0.955 -0.025 0.027\n",
"boston.data[7] -1.4758 0.199 -7.398 0.000 -1.868 -1.084\n",
"boston.data[8] 0.3057 0.066 4.608 0.000 0.175 0.436\n",
"boston.data[9] -0.0123 0.004 -3.278 0.001 -0.020 -0.005\n",
"boston.data[10] -0.9535 0.131 -7.287 0.000 -1.211 -0.696\n",
"boston.data[11] 0.0094 0.003 3.500 0.001 0.004 0.015\n",
"boston.data[12] -0.5255 0.051 -10.366 0.000 -0.625 -0.426\n",
"==============================================================================\n",
"Omnibus: 178.029 Durbin-Watson: 1.078\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 782.015\n",
"Skew: 1.521 Prob(JB): 1.54e-170\n",
"Kurtosis: 8.276 Cond. No. 1.51e+04\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"[2] The condition number is large, 1.51e+04. This might indicate that there are\n",
"strong multicollinearity or other numerical problems.\n"
]
}
],
"source": [
"import numpy as np\n",
"import statsmodels.api as sm\n",
"import statsmodels.formula.api as smf\n",
"\n",
"# Fit regression model (using the natural log of one of the regressors)\n",
"results = smf.ols('boston.target ~ boston.data', data=boston).fit()\n",
"\n",
"print results.summary()"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"regr = linear_model.LinearRegression()\n",
"lm = regr.fit(boston.data, y)"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"(36.491103280361614,\n",
" array([ -1.07170557e-01, 4.63952195e-02, 2.08602395e-02,\n",
" 2.68856140e+00, -1.77957587e+01, 3.80475246e+00,\n",
" 7.51061703e-04, -1.47575880e+00, 3.05655038e-01,\n",
" -1.23293463e-02, -9.53463555e-01, 9.39251272e-03,\n",
" -5.25466633e-01]),\n",
" 0.7406077428649428)"
]
},
"execution_count": 120,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lm.intercept_, lm.coef_, lm.score(boston.data, y)"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"predicted = regr.predict(boston.data)"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {
"collapsed": false,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEYCAYAAAB7twADAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcXFWZ97+nu6urqveENGFPB5KQQAJJkO1FpMMmvjMK\n+g4googEZDEksggBZDOyBGSCiCGEiYZBsgiOCjNoQ7RbJ2LoDKvSrDIdISzdyiJZINvz/nHO7bpV\ndau7qrv2fr6fz/2k6lbde8+thvO7z3Kex4gIiqIoijJUKgo9AEVRFKU8UEFRFEVRsoIKiqIoipIV\nVFAURVGUrKCCoiiKomQFFRRFURQlK5SEoBhjGo0xDxhjXjDGPG+MOdQYM8IY86gx5iVjTJsxprHQ\n41QURRnOlISgAN8HHhGRScCBwIvAXGCViOwL/Ba4ooDjUxRFGfaYYl/YaIxpAJ4WkX0S9r8IHCUi\n7xhjdgE6RGRiQQapKIqilISFMhb4mzHmx8aYp4wxi40xNcBoEXkHQETeBnYu6CgVRVGGOaUgKFXA\ndOCHIjId2Ih1dyWaVsVtaimKopQ5VYUeQBq8AbwuIv/j3v8MKyjvGGNG+1xePUEHG2NUaBRFUQaB\niJhMvl/0Fopza71ujJngdh0DPA88BJzp9n0V+GU/5yjb7dprry34GPT+9P6G4/2V872JDO45vBQs\nFIDZwP3GmBDwGvA1oBL4qTHmLGAdcEoBx6coijLsKQlBEZFngYMDPjo232NRFEVRgil6l5fSP62t\nrYUeQk7R+yttyvn+yvneBkvRr0MZKsYYKfd7VBRFyTbGGKTcgvKKoihKaaCCoiiKomQFFRRFURQl\nK6igKIqiKFlBBUVRFEXJCiooiqIoSlZQQVEURVGyggqKoiiKkhVUUBRFUZSsoIKiKIqiZAUVFEVR\nFCUrqKAoiqIoWUEFRVEURckKKiiKoihKVlBBURRFUbKCCoqiKIqSFVRQFEVRlKyggqIoiqJkBRUU\nRVEUJSuooCiKoihZQQVFURRFyQpVhR5AOhhjuoEPgB3AVhE5xBgzAlgJjAG6gVNE5IOCDVJRFGWY\nUyoWyg6gVUSmicghbt9cYJWI7Av8FriiYKNTFEVRSkZQDMljPRG4172+FzgpryNSFGVYIiK8++67\nhR5GUVIqgiLAY8aYtcaYs92+0SLyDoCIvA3sXLDRKYoybJg3bx4nnXQSIlLooRQdJRFDAY4QkbeM\nMc3Ao8aYl7Ai4yflX/e6667re93a2kpra2suxqgoyjBg5syZzJ8/nwcffJCTTz650MPJGh0dHXR0\ndAzpHKbUVNYYcy2wATgbG1d5xxizC9AuIpMCvi+ldo+KohQ38+bNY8mSJbz44otEIpFCDycnGGMQ\nEZPJMUXv8jLG1Bhj6tzrWuB44E/AQ8CZ7mtfBX5ZkAEqilJ2iAjLly/n2WefDfz80ksv5bjjjuMf\n//hHnkdW3BS9hWKMGQv8HOvSqgLuF5GbjTEjgZ8CewLrsGnD7wccrxaKoihp88QTT3DRRRfxxz/+\nkaOOOor29naMyehBvSwYjIVS9IIyVFRQFEVJhzfeeIMrrriCn/zkJ3H7f/azn/GFL3yhQKMqHCoo\nAaigKIoyEFu2bGHs2LG8+eabSZ9NnDiR559/noqKoo8QZJWyjKEoiqLkmurqai6++OKk/SeeeCIP\nP/zwsBOTwaIWiqIoCtZK2X///Xn11VeZMmUKCxYs4Jhjjin0sAqGurwCUEFRFMVj/fr13HPPPVxz\nzTWBVsevf/1r1q1bx9lnn01lZWUBRlg8qKAEoIKiKMqmTZv43ve+x/z589m0aRP33XcfX/7ylws9\nrKJGBSUAFRRFGb5460kuv/xy3njjjb79u+++Oy+99BK1tbUFHF1xo0F5RVEUHw888ACnn356nJiA\ndX0tWbKkQKMqX9RCURSlbNm2bRtTp07l+eef79s3atQovvvd72qcZADUQlEURfFRVVXFggULAAiF\nQlx66aW8+uqrnHvuuSomOUAtFEVRShovTlJVVcUpp5wS+J2bbrqJf/mXf2H8+PFZuWZvby/d3d20\ntLTQ3NyclXMWGxqUD0AFRVHKlyeeeIJvfvObrFmzhp133plXXnmFhoaGnF5z+fKVzJx5AdXVLWzZ\n0s2SJQs57bRTc3rNQqCCEoAKiqKUH6nqbl122WXMnz8/Z9ft7e1lzJiJbN7cDhwAPEc0OoN1614s\nO0tFYyiKogwLTj/99CQxAVi4cCEffPBBzq7b3d1NdXULVkwADiAUGkN3d3fOrllKqKAoilJy3HDD\nDUn7TjzxRJ5++mkaGxtzdt2WFuvmgufcnufYunUdLS0tObtmKaGCoihKyfHJT36yLwA/ZcoUVq1a\nxS9+8QvGjRuX0+s2NzezZMlCIpFWotEpRCKtLFmysOzcXYNFBUVRlKLkjTfe4Otf/zp///vfAz+f\nP38+ixYt4umnn85rEcfHH/8jH320mc2b/8FHH23m8ccfz9u1ix0NyiuKUlRs2rSJW2+9lVtuuYVN\nmzZx4YUXcscddxR6WAC88MIL7LffQcAavKA8HEZX15NMmjSpsIPLMhqUVxSlZBERli1bxr777st1\n113Hpk2bABto7+rqKvDoLJ2dndiu47GgPOzh9isqKIqiFAV//vOfA+tubd++nYULF+Z1LL29vaxd\nu5be3t64/YcccgjwOv6gPLzh9isqKIqiFAVTpkzhjDPOiNvX3NzM3Xffzfe///28jWP58pWMGTOR\n4447jzFjJrJ8+cq+zyZNmsTxx7cChwHjgcM4/vjWsnN3DRaNoSiKUjS8+eabjB8/nq1btzJnzhy+\n/e1v5zQNOJGBFi7GPl8CfAA0Eo3O1IWNDrVQFEXJG16c5Nvf/nbg57vtthv33nsvXV1d3HrrrXkV\nEwhauLgrFRWjePrppxM+Pwn4KnCSLmz0oRaKoih5obOzkzlz5rBmzRqMMTz55JNMmzat0MOKI95C\neQE4H9iJaPRdlixZyLHHHq0WSj+UjIVijKkwxjxljHnIvR9hjHnUGPOSMabNGJPfRxlFUdJi/fr1\nnHHGGRx66KGsWbMGsJbKRRddRK4f9lIF11MRW7h4FHAW0AG8wubN7cyceQEAn/zkocCXgBuAL3Hk\nkYeWnZgMlpIRFGAO4M8dnAusEpF9gd8CVxRkVIqi9MtNN93Efffdl7T/8ccfj2t8lW36C673x2mn\nncovf7mS2trxJNbsam9v57HHOrDrUF4G1vDoox288MILObmHUqMkBMUYswfwf4F/8+0+EbjXvb4X\n69RUFKXIuPbaa5NKyp944ok8//zzTJ48OSfX7O3tZebMC9i8uZ0PPniyz8JI11KZNm0aO3bEpwdv\n3bqOV199FdiD+HUou7Nq1aqs30MpUhKCAiwAvgX47ePRIvIOgIi8DexciIEpitI/zc3NXHPNNQBM\nnjy5r+5WtppdBTHUqsCe6ysanUFDw3Si0RksWbLQ1Qp7g/h1KOsZPXp0lu+gNKkq9AAGwhjzT8A7\nIvKMMaa1n6+mdMZed911fa9bW1tpbe3vNIqiZMr69eu54oorOP/88zn88MOTPr/wwgsZNWoUp59+\nOlVVmU87mXZIjK8KbNN/M60KfNppp3LssUfHXde6trYDrUAL0A1sZ8qUKRneUfHR0dFBR0fH0E4i\nIkW9ATcCfwVeA94CNgD3YVMwRrvv7AK8kOJ4URQlN2zcuFGuv/56qampEUAOPfRQ2b59e1avsWzZ\nColGR0pj43SJRkfKsmUr+v1+T0+PdHZ2yqJFiyUaHSkNDdPSOi4dOjs7JRqdItAj0CnQI9HoZOns\n7BzyuYsNN3dmNl9nekAhN+Ao4CH3+hbgcvf6cuDmFMdk4adVFMXPjh07ZNmyZbLnnnsK1jvQt913\n331Zu05PT49EoyMFnhUQgWclGh0pPT09gd9PFJ9FixZLZ2dnyu/nejylzHATlJHAKuAl4FGgKcUx\n2fhtFUXx8f7778tOO+2UJCaAnHDCCVm7TmdnpzQ2TneTt90aGqbFWQSeRdLV1ZWXyd4TrWxaPsVI\n2QvKYDYVFEXJDQsXLowTklGjRsmiRYtk69ataZ/DE4NUk/5AFoHfIgmHG5w7KrX4ZIuBxl0OqKCo\noAxbhsP/4IUi1W+7detW2X///SUUCskll1wi7733XkbnTTc2kmgReG6sZIukXSA6LNxR+UAFRQVl\nWJJp0FZJjx07dsisWRdKRUUopXtn7dq18vLLL2d87nRjEX53lj/Qbi2SJolGx8ZZJJFIi4TDTUNy\nR6XzcDIcHmBUUFRQhh3DKUiaT5544gn5xCc+4XNp3ZPV3zYoNlJfP1WWLl0a6M7yLJPEv7W1SNrj\n/vae+AxmnOk8nAyXB5isC4oLgoczPWkxbSoo5U06QVslfd544w35yle+EhBs31ngg6z9tkEPAhCV\n+vopKcUjHG6S+vr4GEk0OlnC4YasBMjTeTgZTg8wgxGUgVYYtQMfG2PWAr9z2x9EZLP/S8aYsdha\nW28Di0Tk/QHOqyhZIRsL2IYziQsGH3vsscC6W/Ae8O9Z+229legzZ86gqmovPvzwJeA6PvzwMuA5\n5sw5kurqffCvdK+ubmHLltfw/63hTZ5+eg0bNmxIe9FjKrzV9Zs3J6+u985rV9rvTnzpld3ivjOs\n6U9tgHXAN4Dl2HoDO4CPgT9gFxx+Gqj1fb8ZuDtTVcvlhlooZc9wSeMUCfbdD9afH+S62b59uxx0\n0EFx1klFRUjq6vbLyW/b09MjS5cuTbI86uomSzjclGQJ5GKxon8sA1kfXV1dSYF/iEpXV1fWxlEs\nkAOX120J7/d2ArMR6HUCswVbevNm4BzgN5kOIpebCsrwYDgESYMEYNmyFRKJNElt7b4SiTSlPcEG\nTZ6RSJO0tbXJQw89JIBMmTJFVq1alfK3zdZvnmoiTyUeufxbD/RwYlfKjxVoEpgg0CSRSEtZuliz\nLiiBB8BdwJ7u9STgAuCnwDtYu/iMTM+Zy00FRSkHUk26VVW1AiMEpgjUS1VVbb9rOtra2uQnP/mJ\nHHPMMRKJ7OGzClYI1Eht7YESjY6UuXOv6Hc9SbYD06km8myLx1AzuHp6eiQUqneCcqBAk4RCdWX5\nIJMvQbkpxf4o8CNgn0zPmctNBUUpVjKZLIOSD2pq9hOoEZgvMNJNcFGZO/eKpOOXLVshoVCD+54/\n2P47sXWpRqQdaM5VYDrX6brZEMGenh6prm6Mu/fq6kYVlCEIygpg1xSfVQG3Z3rOXG4qKEoxMpiC\nh8lZTw0Ce7mn5dj+UKihz6ff09Mjv/71ryUUqhUYnZS9VVlZLbW1EwTGpZ0pN1BmXa5cUkMRhGyJ\n4HDKKsyXoByNrfp7ClAZ8PltmZ4zl5sKilJs9De59TcZJ7qFzjrr6wJh58sX3zZewuEGmTVrtkSj\nI6WmZoJAJElMABk3bpz813/9V+B4Uq3n6G/8uVqjMVRByJYQxMbRLrbacLumDQ9FUOx1mOmC8X8D\nlgGzsR0Tvwk8PJhz5mpTQVGKjVST27x5Nww4GScXQmx3bix/1pG331v01yNQlyAmFQIhWbhwkYgk\ni9WsWXP6HUtQzCOXazSGKgjZHNusWXPcbztBICqzZs3O+BylQN4ExV6LA4H/BLa6bK8dwNPAuMGe\nMxebCopSbKTKsOpvwku0XOIn2BVORMYJNLr3IjDePUV736l0YnKGwHspr5Gqam+ixdL/mDKf9DP9\nzTIVhGykl+vCxhwJSt8JoBE4CBg/1HPlYlNBUQrBQHGExMlt3rwbUk7G3ne9DKxga+C3AlUCewq8\nJUFlSWwAf8KAE36QMHgr0geynnI52WZLEIYS39EYSpYFBagFPguMSth/LhDN9Hy53lRQlGySzoSU\nbhzBf65Uk/HDDz8slZX1cfu9rCLvOjU1E8QYz/pAQqGdnNtqtlscuI/YLK7FEpTNFWR5pFMzK504\nTzr3nu3fP5eohZJ9QVkKfAt4GKjz7d8b+FGm58v1poKiZIt0hGIoE07iZHz88Z8RG3QfH/dEDPtI\nW1ubrF+/Xj772c/2CYm3GWPkN7/5jYjYld2VlVHnCpsmUCu2ZtbUuFhJff00CYebZNGixXFjqa09\nILCqb39P5elaZ6VaXHG4VGbIl6Dc5v49GDg74bMjga9les5cbiooSjYITtttSiq50dnZ6cqI2H7j\nmU6+3vvVq1eLzcy6S5KD7jXS1tYmN998S5KYWAslJIsXL+67Rmw1/QSJRJr66SdiLZFFixbHrcAP\nhxuS1l4M9qm8XJ7wu7q6ZOnSpWVZcsUj7wsbg1KEgQWZnjOXmwqKkg2CfOdeeq6/b/miRYude+hA\nJwTzAyfMnp6efrO6zjvvAhfzmC42Q6vRWSqNEgrV+cTg5DgxOeGEE+SVV15JGn+Q1WDFb1rCPR0g\n4XCDRCKJa1vqsvJUXg4xiFK3sNIlX4JyN7CLe31rwOfzMz1nLjcVFCUbBMcVRgpc7VxI0yQcbnCr\n0eOf+G+99ba4ydx7+reCkfyk3tXVlWQRQINAtYTDDbJs2QrfxNzjxGaKwK4yb94NGd1TYgFGGCk1\nNftJbe2+SZN+W1vbkOMXpW6hlPr4MyFfgjLVpQcfHiQewPJMz5nLTQVFyRbLlq1wE/B4JyaLfe6o\nFQL1khjviET2l3C4QWpqbCzi1ltvcxPS/c76iJ+05827wa2A97KxXhf4srNSqmXlypUBQfznBJ4S\nGCGRSFNGk1vMojogzqJKtFCKLVurUJSDhZUu+VzYeKZb2Pg2sBC4FJgLdARZLYXcVFCUbNLV1eUm\n/HaxcZIDnZWQapFhYupuVCKRvXzH+GMyja7Y48+d1XG+s2I8l1Y4LnV43rwb3OfT3LlWDGpyW7Ro\nsYTDDVJXN7nv3Lme9AudrTVY1ELJgaDYa3E40OZb2Pg+MJ+AciyF3FRQlGzjTbZ1dZOdYPitDW+R\n4Xjn/tol7mnWpvBWO5FZITaNdx+pqKhx5xovNhMr7BMSb5sssF28hIDVq1c7S+J+J1DpTW5Bk3m6\n+5TStrAyoVALG6uA0cUmJL7xDfV3VcqEgcqSZzJ5et9ftGhxQDykXaqr62TOHK9ER3yGlhWZemdZ\nNEpFRSThe0EteBEbJ3lLvISA6uo6OfnkUyUSaep3cvPf22DWyCjJDIffJ18xlPMD9u0OjM70XGle\nLww84eI2zwM3uv0jgEeBl5yl1Jji+Oz9wkrJYt06TVJfnzzxDjVrx5+x1dAwTUKheqmqqhdbCiXq\nLI6pzo3lWSJd4qUWRyLjJD728p7YWluekOwkEBIbJ/GEqd6dd6xEIiNk3rwb+l1o2Ng4XSKRprTS\nf4dLFpPSPzkRFGBPoNr3/pGA7zQC1wCXZjqAtAYJNe7fSmx3yCOce+0yt/9y4OYUx2bxJ1ZKkVjg\nOXkNSTZ94j09toFVJBK/Gt1eu1qgxb0Ou/0fCzzr4iaJlkxIbCmVSwVWSyhU50sIqJd0U5Nj99Yj\n8B2B/hcoFkuMYDhYAMVOrgRlPbAJaAeuB37vF5iE734CuCTTQaQ9WKgBOoH9gBc9qwjYBXgxxTHZ\n/I2VEqOrq8v1Atk/biL11pAE1dCCfTJKv/XT2dkptbUHJp3Pxjk8sWgQCIkxVVJVFXEdAL0mWQcI\nROVTn5oh4XBjnCvLphPXuePjU33r6ib3U5PLi+tMc0I0P6VYFEMWk1pIxUGuBGVvbFn6B11W1w5g\nsxOWecCxngXhvn9LpoNIYwwVzuX1D+/8wHsJ33k3xbHZ/ZWVkiGW5jshaSK1TanaJRJpCrAoMk+/\n9Qher1Ij3qp5WCP+zC1jvPjJCvedTqmtndz3dJ74lG4zu+KbYXmLEYMsFBvfSbaY/BldA40/nxZK\noa+vxMhXDGUN8HVgObbR1g7gYxfnWAn8d6bnzODaDcAfgdZEAQH+nuIYufbaa/u29vb27P3iSlES\ncz0lLtqLOpdPROA2gTapqdlbTjnlVMlG+q3HsmUrXKxiH3feaoEOsetJgoLt17hJf+BMrVSFG70a\nXIkECVB9/VRZunRp2pWQ82khFIOFNFxpb2+PmyvzJSi/Sni/HzAL2xr4AeCATM+Z4fWvxq57eSHB\n5fVCiu9n7QdXihd/1pVX6t1O5it8k9M+Ars7YfEHzUMSS/+1k3pQn/BM/PqeqLW1tblMsBFiTFWA\nmIQEbhDYR2prJ6Q1gXsTfn391LiCjqnGMZgn/kLFMNRCKR7yJSinZHrMUDZgFC6DC4g6V9sxLih/\nuduvQflhTGyCTYwRtDvhWO3EotG9rpdYJ0Nv/2L37+4CDRIK1cVNYpmm23Z1dcnKlSvljjvu6Av+\nX3PNNQliMkPglb5Js62trW8V/ECTeaqikkMpKV8slNp4y5V8CUoY2w9lt4T9R5CDtSjAFOApF0N5\nFpdJBowEVmHThh8FmlIcn83fWCkyUtfY8sqijHciM1piqbYT3OtGsQsSawS+6Pt+k0QiLX1ulnSf\nmr2JMBJp8Vk99vqzZs2W7du3y0EHHSRTpkyRK6+8KnDSHExAOt2y+qWUNVVq4y1H8iUo17vg+NqE\n/ZOAOzM9X643FZTyJrgK8H5ig+5+kWl0VskIsWtA/IHqdklO2432lSYPukZd3YFJ6bY2ZnOc2DUk\nkcDzrV+/XrZt29Z3zECNrQZy92TDRTQcSrErmTMYQakgc8LAPwHf8e8UkReAXxpjvjiIcyrKoGhp\naWHLlm7gObfnOeAvQDNwgNt3ANZzugVoAX4O1AMhoBdYB+wR9/1odB82bNiQ8hobNrzM3XcvBmDT\npk1cddVVfPTRB8Bj2DyV+oTr70FnZye77bYblZWVADQ3N3PwwQfT3NwMQHd3N9XVLXHHhUJj6O7u\nTnn/gznGz4UXfpP99juIM8+8kf32O4gLL5yT1nGKEkimCgTcPpTP872hFkrZM2vWbGdh2CD7QQcd\nLIml4e37u5zlEHNF2f37J1kooVB8Gu6tt94miVV5ISLf+ta3ZLfddkuIjXjb7wItnlTk20Lp6urq\n1zJThjfkyUJpNMZM7ufzjwdxTkXpl97eXtauXUtvb2/S/oUL78HO4e8C23nyyV5gG7aB6HTgKGwN\n028CBpv5/rL7N4xds3sdcBgwDjicrVs/4j/+4xd912lu3gnYFfg37JraMUAFt9++gjfffDPFqI8H\nxgOHMWvWOUyaNKnfe2xubmbJkoVEozNoaJhONDqDJUsW9lkw2TrGo7OzE1sII9mSUpRBkakCYYPk\n64HTARPw+eJMz5nLDbVQSp7+gs4rV650T9lXS2I5EmuNjBCISCg0SaBSbOqw+LZpYmtqidg1KjVi\nA/q2PIv3pB//NN/ji8HsEFuny1olO+20k8ydO1f+9Kc/xWV5ZcJgAtKDOUYtFKU/yEdQ3l6HU4CP\ngG7gDuCrwBeA24GlgzlnrjYVlNJmIJfOHXfc4YQgufOgrZ0V9olAgySvGm8Sb+1JfE+THqmvn9oX\neN+4caOcf/4FbgLeM0GY1goYOf300+W9994r5M+VMTF3YSwbTVFEBicog3F5ISI/xfZDeQX4BvBj\nbGmWicDswZxTUYIYKOh87LHHAm8Cu2G9rb14rhv7elf3vhvrzroLmIF1hR0ObMRmvM/A9oprxbqz\nHmPbtr8yZswYli9fzsSJE9lrrz3p6nqSO+74FpHIu8SC9NVEIo0sWLCApqamnP0WueAHP/g+XV1P\nsnTpVXR1PckPfvD9Qg+pJEjlgh32ZKpAiRs2feYQoGWo58rFhlooJUX/qbR2IaK/zlZPT49Mn35w\ngLsrKjBHYsF5v5vKW9AYkVCoViorayW+q2KNRCJN8p3vfFcOP/zwPndWbW2tPPLII3F9RQa7+E7X\nWZQuw6V4JflyeZXSpoKSPXI9Cab6H3XZshWuIm+NwDiprm7sa1Ob3NzKq9l1mxOJkNhFjJPFLmqM\nSqzGVlg+/enPSChU58RmqkCDVFSE5XOf+1yfkPi3UGinvrEN1OUw1e/lX9k/UOkUpbgYTqVhsi4o\nwMXAMQOeBMYCtwKTMx1ArjcVlOyQi6eyxMk31f+oQZ/FqgT72+96m1ezq1pi6cRekcaIeKvhPUsm\nEpnkBKjGxV0i0tLSEiAoVQLfEnhmwMZU1dWNEgrVJf1etid9ctFKFZXSYDgVr8yFoLwCPJmw71Tg\nGWAZcKxvfwibl/mVTAeRy00FZejk4qksUaCC+pJ4/6MG/U8cDu/thKPHubn8E3SDGOOJSaLl8nOx\nWV3tEgvcV0isVMo4scH7KjHG9IlJVVWjwMspJ5HgEjDxFYRt18gGie/OKJKq/LxSfPT09CR1vQwq\nJFoO5EJQRpJcs+thYA52SfB24DXgSmBX9/ltmQ4il5sKytDJ9lNZKovDNo9qT8tCsZaG96S/wk3e\n1pVVUeF1RUycuPdxYjHdiclezurwhGSEO9ez7jxVMmnSJHnwwQf7FdSenh5ZunSpK07pv14sJbmu\nbrKEQg3u/pIz0oIaZCnFR09Pj89FOk1gRFIh0XIhLzEU4E7c+hNs860bsWk2W4EngfZMz5nLTQVl\n6GTbQkkWqBUCNRIO2xXrkUhLklst1hN+qnMZ7SLgT3mNCITln//5n11L3Vv6sVBE4FGJ9W3/ddzk\nbq2KfSQSaZHHH3/cd/2GpMZUsXjIlIDrxSwUK5ZeXxKvJXFs1X25+uHLjdh/uz3uYaFHXV5DFJRJ\n2NzL43zCUomt73WRZ6kUy6aCkh2yWVI8OXMrfm2Iv9+7v8dJff0UCYcbZPbsOW5CHuGe+D0XVo2z\nTKJiC0SGnUXiTdy7CPxe4Hrxd02E0xKsivsFon1uqFRB9GShtTGZ+vqpfTEU7/eaO/dKiU8euFog\nLNHopLLOFCo3NCg/BEHB1qwIB+yvAk4G9sz0gvneVFCyRzazvLxJOhYL8Sb0HgmH95a5c6/09TiJ\nCMwSWyX4fve0H7TqfbLYjK5YoywrKru7/VUCO/uExL/9QWI1v+oFRsu8eTf0O4EEVyGe3NcNMTHp\nINFVUlVV29cDpdB/DyV9hsti0FwISlD/+GjA98ZiV8nPJUVfkkJtKijFS1dXl4RCXiqvFwtpckLh\nNcry4iPG96FZAAAgAElEQVRed8WxTiTCkuxiqnGbFyOZ7d4f6M4RSiEmlQJ7OCG5QqC9X9HwXByZ\nPq16ac61tRMkEmkaklUyXNZCFBuxv3m7eJaxWijpC8o67Er45cAbxPrH/8HFTo4Han3fbwbuznQQ\nudxUUIqXzs5Oqa3dV2KlU/yLEO8XqHP7Y//zWqFodJ97x3kWSIMkx0zaEwTH34Z3hMAigVUCYams\nrE1y6Q0kGpm6ArNhVQwnt0uxoWnDQxOU2xLe7+0EZiO2rsUObJOJNcDNwDnAbzIdRC43FZTC0t9C\nv1hTqhFig+jjnEUyUmKdFBvcNkVimVn7OtGpd4Kyv7NYvKD3RoF33PtO3//8+4hdb7KTO3eTxOIr\no6WyMiqf//z/k9WrV8fdw7JlK1yqqM0iC4Xq4oQj366n4TSpFRvDSczzFZS/y4uduAD9BcBPgXeA\n94AzMj1nLjcVFEu+J72enh6ZN++GPrdMKFQv1dWNKVbB10lsEWJi8caoE4wmgZOdcNQKfMm9bnff\nbRcba7lJrPvq6AALxVtBv05iHRw9yycqqfziMeG7X7w4jr/8S74ZTpNaMTJcet7nS1BuSrE/CvwI\n2CfTc+ZyU0HJn7/dn5UVXxIlOZMrcR2Hzdyq8lkZ3naAwA0SW2cSFRvz8Cb/JrFpuE9IcozEi8/4\nm2I1uvF49b7GuX3ptACOt57mzbshJ79jOgyXSa1YGQ4JEfkSlBWpUoNd9pd2bCwi8vE061kjkUiT\ny8qKis3K8twynZJYHsXvoomVI7k6YGJvkuSV8ImWR2WCkHjbOLHpw51ORERgH6mtnSDR6Ei59dbb\n3Mr1ywUmJAjZeFm6dGnf/cVcc8VjFQyHSU0pHPkSlKOBt7A9USoDPteV8kVErv3t3pNy8krzkRJb\nEZ7aQlm0aLFUVUXFBta7xFYI9go4JgqTt40TaPMJRVAqcEjggqTrQlRWrlzZNwkvWrQ4IdMs9j1/\no6l5826QROtJ4xZKOZMXQbHXYaYLxv8NW9NrNnAStpbXw4M5Z6624S4oubRQgkuieCvN411VoVCd\nVFc3xrloFi3yVoz7izfuLjYWcr9YV1ZD4GRv3VTT3flrJbbq3ROTh8W/2NArbR+JtPSJgH/Boi3X\nknptgcYtlOFG3gTFXosDgf/EllzZ4bangXGDPWcutuEuKCK587cHWT920d5dAmGprZ0okUhT3wLB\nxIyv5Kq7I5yA7O87X5cTmhECE52QVKcQGOOsFS/A71k5V0vimgHrZmsQf7HISKSp35a9GrdQhhOD\nERSvdMqgMcY0Ylvh/UNEXhnSyYLPvwfw78BorGjdIyJ3GGNGACux7fW6gVNE5IOA42Wo91gO9Pb2\n0t3dTUtLC83NzUn76+rq2LBhQ9+/id9Ldc4xYyayeXM7tivic9hea4aqql2pqPg7d9zxPc4995yk\n4x555BHOOutGdux4yffJdGxG+tvAf7tzLsPWHj0Y2xR0HvY/h5d9x43DVv/pATZRUVHJ8uVL+cMf\nHufOO+9mxw4D7EZ19d9YuvRuAL72tfP4+OMabGLiOGA9kUgDv//9Tzn44IMz/h0VpdwwxiAiJqOD\nMlWgfG/ALsBU97oOeAnbang+cJnbfzlwc4rjh6jT5Yv3xB2N2sKGodBogahEo1P6fQLv6emRtrY2\naWtrk1tvvU1imVRNzl01os8dVVERDazLVVMzMcCVNcKdY6bYlOAWSQ647+muEVyEEWqkpmZvufzy\nKxLGNVMiEVsjLLbSOTnYn8o6SQcNkivlBHkKytcCnwVGJew/l4CyLNnegF9gS8C8CIyWmOi8mOL7\n2fp9y4rg+Ed89lSqJlL+7olVVbWuQVWnwD2S3D2xRioqwlJd3Sh1dVMTXFBjnKvKc01ViY1/7OQE\nxb+q3b8dLrH1KTViEwFEvCyuUKg2sIlVOLynLF261LnpkjPPotHBlZD3Z7lpKRSlXBiMoFRkZgQB\n8ENnIfzYGFPn2/+Y+yxnGGNagKnYlfmjReQdABF5G9g5l9cuJzyXU1XV7li3Eu7fPbDPC/Z9KDSG\n7u7uuOO+9rWvs3UrwH8Br7Bt23/y0UfdQBhb9m3XhHPuyo4dlWzZ8ns2bHga+6f7Htal9R5wBraq\nTwjrvawCNmDLx+0eMHqDTTQcB/wr1tU1yX32HPAm559/NqFQS8I4xvPxxz2MGzeOLVu6sa61bndM\n7NiWlpY0fsHY7/Hd797IXnvty9VX/5iPPjJ88MFlbN7czsyZF9Db25v2uRSlHKgaxDF/F5FbjTEd\nwBeBfwMQkdeMMT82xnxNRH6czUECOPF6EJgjIhtcNz0/KQMl1113Xd/r1tZWWltbsz28kmH58pXM\nnHkBVVVj+PDDV4FbgMuwE+ob2IkW4Dm2bl1HS0tLX9zgvvvu5+OPt2GF5/8BC4FTqa5uxpijqKgY\nwebNb7tzeTGVN7EVe/yT+1hsXARsXkcFsZjJc8DhxLpKn+IbfTOwyY05hDVM78EWxd4JeJNweDR3\n3/1jtm3bDnQArX33FomMpbq6miuvvISrr/4n7DPIYcA+wGtceeVVacdFli9fyVlnncdHH20B/ugb\n+wzgxT4x1jiLUip0dHTQ0dExtJNkatLgWylPwJoTYEGm50zjmlXAr7Fi4u17gXiX1wspjh2y6Vcu\npHJzRSI2nlFV1exiKJP7srO8mEckMlliFYC9Y20swlskaOtd7SqxfiQjJVa4Mb5niE3PrRe4VGxt\nLhG/28qmDe9wbqkqgdVxbrRTTvmiS/mdKtXVDVJZ6bnrEqsT7yWJTayGWkol9jsG9bO3/VQ0pVgp\ndchTDOVuYBf3+taAz+dnes40rvnvwL8mXge43L3WoLyjv8BwUJpvff1UWbp0qXR1dUlnZ6d0dXX1\n1eAK7kLorTMR8WIol156mVRV+UWjXWz6789djCPiYiITfOfbIbbulnFbp+8ajRKLrVSLTReOFxyv\nj0hnZ6e0tbX5uuglC2Zt7cSkuMZQUoDju/YlXq9myKXpFaUYyJegTMWuNzk8SDyA5Zmec4DrHYHt\nXf+Mu+5TwAnYfversFlfj5KiD8twEpSBanbF1l60i1ciPvHJPN6K6RS7INA/mR/g9j8roVCDHH74\nkRLcv32c2PLzX5T4Hie7CqwROEyIC7R7dbyiAqPdv2GxgfvkhY1e18T4MSdbDJ5gBgnsYLOy4n+j\nWD/7SGRE35obRSl18iIo9jqciV0p/zbWkX4ptrlWR5DVUsit2AUlW6mm6fbtsCnCYfGytEKhhjjh\n6ezsdPW4JOUTv03nrZGKihqJZYYlf6+y0mt45d+fKnOr0gnQdLGLE/0i4rnJJovnvqquboz7zbzm\nVYnXy5XryW/h+BdvKkq5kDdBsdficKCN2Er5950bKqm+VyG3YhaUbFYBTr+zYHJdLf/kHCuH0u4s\nkat9k3lUbFqv12L3fom14fUq8Y4TGxuZL9XVdU7AxLftnkJQQj6rJqi971iBa8Rf5LGtrS3uN+jp\n6ZGTTz5V8tWeVdedKOVMXgWl7wQ2YD662ITEN76h/q45Idu1odLvfZ64/qJHYPe+gon2HJ+Om5Rt\nb5E6iQXcV/iO9VsE7WKtH1tHq7p6dwlyV9mYiV9Ibvcdu7fEFkcmHvdz3/uaQEEJas/qxYd04leU\n9MlXDOUTwB3AkZkeW4itWAUlW1WA/U/JqQLNqS2UmP8/HLZuGxuIT3RfhcXGQfzFGO3KdGO8oope\n/OMId9xZThj2klhdLa8a8YNOVGrFVg3ukVjNrkonZJ7FM01irXtHuPcjJBSqSxKIoN80HN5LQqE6\nqa/vf/W/oijx5EtQfoJdEfZUpscWYitWQcmGhRLkMkvlholV1p3qJu66JOsiHG5wpdz9gfhEK8Tr\nzT5WvOD46tWr5ZprrpFrr71eIpEmqapqdNbH1xMsl9W+83pCc4Akdku04uHvLR+R0077slRXN0hN\nzYSUWVTJv6nnrjtQElOHFUXpn3wJys0uw2qPTI8txFasgiIycOpqfz76VO6d/iZLfz2t6uo6iWVm\nedbABKmsrHUTerv7zB8n8bZ9BO6QurpYqZKNGzfK9ddfLzU1NRJzZ0XEttv1jql112qXmCusS4Ld\nYmGJ9ZH/ktj038kSDjfEZXil+k3r6iYHnHdk3JgVRUlNvgTlDOCITI8r1FbMgiKSWjQGCth3dnZK\nNLq3xFrSxvf6GOgasS6J7eItULT9Sxol5r5qEevqqk+YmBvjBKy3t1f22GMPn5D4t9N8Vs1d7l/P\nBSYCSyWoWyKMErhDYKXEGnXZ66cjnEuXLnW1w/znPUDC4Qa1UBQlDfIlKFHgYeB6YHKmx+d7K3ZB\nCSIdd1hXV/CTfWK13P6Eadas2c4S2FViGVr+rov1Yt1UNm23qmpfia0licoxxxzXd73Pfe5zAWJS\n6TtnnVgX1mRnqXhutFQWSsgJyYGSWAAyKNaUKJqpqgL0Z90oihIjX4LyC2wzis1uwWEP8ADwDWD/\nTM+X660UBSWdgL21UOJTchOr5fYnTLHPlga6huzkP04gLKFQnVx77fWuVe81AieKdWfFUnNffvll\nCYVCAkhTU5PMmHG0E6vdnUXjbw28nxOMGomthvcH9kNSUVGbMKZYifpEcU0lmv64UTjcpGKiKBmQ\nE0EBLnBB+HedZfIbtz8EfAq41i1o/MgJzJpMB5HLrRQFJR0LJZ3v9CdMsc86xcYqxLfZelSeKywU\napCqqjqxgfiwEwB/Ta+orF69Wj71qaOksjIsDQ0HuhjNWIErnfgcIF5gPFbCPhZ0r6kZL1VVUZk9\ne460tbX5Fld62z4CuydZWQP9DrpWRFEGR9YFBVtNeAfQiy1DuwP4AFuo8USg3vfdCHAM8OVMB5HL\nrRQFRcQuMAyHG6SubnLKdNd0gvoDWyjtElSPyrqbPDfT3gIXCOwhNmDf4LYu9/k4CYXqJN5l1i6x\n3vC3iXWftUgo1CDh8F4JYhEr5+KtGwlyV82de2VaqcKDSb9WFCWeXAjKH7GtdcE2ojgMWAH8BTgO\nOCTTC+Z7K0VBiblqpgW6ahJ7s3vdE4Oewm2cJHjluHedyso94lxOxoQlluV1n0CFxMdGGsV2Tmzw\nWRztvsl/pMBi8cq7QI1UVdXKvHk3SFdXl6/Sr9dlsUm89SieGKTrrsr2AtHBoFaQUo7kQlCeTbF/\nPnBqphcrxFZqgpJuTS4vXjBr1uy494sWLe4TmNWrV/syuZJTi5ctW+GKRYbFrkK33wmF6iQaHSnh\ncKrMLcQG1tudmOyRYHFMdqKTfA/Llq1wZe7HOcEJOWGyiyZDobq4ysfpTNRDqRw8VLJZPkdRiolc\nCMqjKfbXAUsyvVghtlITlPRrckmfKyhmHcwXf+HHWEZWf+fyV+jtEeiU2trJMnfulS4O4i+T4i+X\n8iN3zIFOEBJX1o/rO59nebS1tSWM3xOk2LGVlbWDmqALYSUUg3WkKLliMIIyUAvgbUE7RWSDC8Ar\nWaC3t5e1a9fS29tLS0uLa1Eba03rdU7s7u6murqF4La9vcBNQA3WU/kKtt3u+9iciVTnmobtAHAp\nMAE4m40b/8LNN9/Gli0PA1f5RjoVmzX+KPA1N8bXgTnAYdTXTyMancHcuZcQCr0D7AucB+zL5s2v\nACSMvxbY0/d+V7ZvFzZvbueDD57MqJVuc3MzBx98cF47JAb9PRLbJivKcGIgQenv80CxUTJj+fKV\njBkzkeOOO48xYyayatVvWbJkIdHoDGprDyQancGSJQtpbm4OFJtY295ubIvcsSS32/0ssBfV1Uey\nYMHNdHd3U1dXx8aNLwGHYOt73gn8DngWK0SVwOexvduPx/aK7yUUqqS6+iQikcnAYYTDtUSjP2TR\nou/zm98sZt26F7n44m9iTAVWyJ4EOjCmkj333DNh/BuxguS9fwzYjVKZoPsTf0UZlvRnvgAbsKVW\nPgM0JHy2MFNzqBAbRezySuUyWbRosUQiTVJbu29c3aply1a4bCq7fqO6urEvhlJbO1FsOm9jgvup\nXrzV76FQg4RCddLYOF1CoXqxWVhNvpjIDp97bKr4U4dhpNTU7C1tbW19GWi2FEpywLw/t50Xc4gV\ni5wtsQZVTS6+UjoupELGbxQll5CDGMoOt23HWiTPAD/AphP/JMUxl2Q6iFxuxSwoqVry2kB5/KQa\nn0ob323RTvBNvr7vYTdhRyS5sOMIgSfdd8IJsZE7E4TIW9xYJ15hxaCU3kzXyLS1tUlt7b4S623S\nI7W1E6Stra0kJ2jN8lLKkVwIyrPA/sD52HTh9T6B2Y7t2LjSfT7RHdOe6SByuRWzoARNvOFwkysh\nH/90v3Tp0sCn/uRAtxeov0VsHazERYtTnagEZW5V+D6PZXHV1Izrm9zj+6nHAu6J6z76EwZdjKgo\nxU8uBGVZwL5xwFnAvcD/Jlgx7wCbMx1ELrdCCko6E2PixLto0eLAyTaVZdDW1pYkNNHo5L5Fkcll\nVRqd5ZIoJtVi+5R0ir/syllnnRN3D11dXa61b6MEpfomWiqp7r8ULRFFGU5kXVDSOgHsBXwZuAe7\n4HH7UM+Zza1QgpLJ+oTEiTfVZBu0P/lp3/Y1Wb16dV+peq+ce1VVrVRURJxYjHFCMkpgJycy8VbO\n2WefE3hPiUUkvVTfVAsx071vRVGKh4IIStIJ4flsn3OI4xnarzoIsrE+IdVkG7Tfm+gjEdv0Khqd\nIpHICDnnnK/Ljh07+mIs9fXTJBIZIRUVUbHlUC4R+G8JhRqksjLirBmvB8n8JDdUsmttpNjyK4lx\nGq3qqyilTrEISuBiyEJthRCUVMH2pUuX5uxpPNbf5BmBZQK7CCALFixIEWNpFH873blzrxRbzNFz\necXXxAq6J3v8d5zF4t9fPH1Hgsraq1WkKANTLIKya7bPOcTxDO1XHQSpVrTnsq95Z2eny5w6PC42\nMmrUKGloSGw0NV5s7az+VrEnB8qT76nGtQ1OXClfHJ0RBypTo3EbRUlNUQhKLjZgiQv4P+fbNwK7\nZPsloA1oTHFsVn7cTInv4R4Vf7n3XKytWL58eZyQ+DfbxyRVuZb4Olv9BcoTP58374a+tOVYf/ji\n6N0+cJma4l/joiiFpJwF5ZPYuh9+QZkPXOZeXw7cnOLYbPy2g8JrRRuUBjzQ0/tA/eQTP/v4449l\nl112iROSyspKueSSS+See5bECYH3pJ4qpbc/l1Cqz9Mpt59Pgl10451Vlv7fQVGGK2UrKPbeGJMg\nKC8Co93rXYAXUxyXhZ928AxmzUV/GWL9ffbQQw/1ickJJ5wgL7/8ctw4ch1LGKwY5QK1UBRlaAw3\nQXk34fN3Uxw35B92qAyUBuwXh4GaYtlV9AsDJ8UdO3bIrFmzZNWqVYW83UAKUeY98XfvzzJTFCWe\nwQiKsccVP8aYMcDDInKAe/+uiIz0ff53Edkp4Di59tpr+963trbS2tqahxHH09vbS3d3Ny0tLTQ3\nN9Pb28uYMRPZvLkdWwzxOaLRGfziF8s55ZQr+OCDJ/uObWiYzrJl8/jhD3/Ir371K2wBxZeAOhoa\nprNq1d0cfPDBeRn3YM8RdK/r1r2Y8+rAQb/7UO9HUcqRjo4OOjo6+t5ff/31iIjJ6CSZKlChNpIt\nlBeId3m9kOK4ocl0jkhVQDE52+pXUlkZlmg0mhBsvzptt81gXVHZsiq0Ta+ilB6UucurBfiT7/18\n4HL3uiiD8v3Rn2srfqFiYvtdbzNxlYhTMZAopPo8fnzxxSizea+KohQnZSsowDLgTeBj4K/Y7k4j\ngFVY38+jQFOKY7P08w5MJkHnnp4emTfvBlem/oCkyT62UHFxkphMmjRJ7rzzzrQsk/5Eob+JPmZV\nrHCpwNMFamTevBsG9dto7S5FKS3KVlCGsuVLUDJxD3nfjUanCESlunq3JGsj3k30OQHEmCqZO3eu\nbN26Na0xDSQKA7UbjkSaxNbsyo5loavUFaV0UEEpkKBk4tIJTmcdIXBOP9bDywJfzdjlNJAoDDTu\nefNukMSyKhr7UJThwWAEZaAWwEoaZNJbPP67AvwZ2xjzHnbsqO47ZtWq37Jt2xbgcOAzVFf/gh/9\naFFGmUnNzc1cddW3gJ0Cx9bc3NzXbrihYXpcu2GAc889h2j0XbTFraIoaZGpApXaRtFaKPcJHJYU\nH1mzZk3GAfGBVtWn02FR+5YoiuIHdXkVRlBEYhNvUIA9kX/919tTZG4hZ5xxRkZptv7S9KmuO1RR\n0NiHogw/VFAKLCg2Y2vftNJ5P//5z8cJSSgUkksvvVTef//9tC2UWFHG9CyjdERBxUNRFBEVlIIJ\nymDWWXR3d0skYlvxnnjiifLKK6/Efb5s2QoJherFNq8aJ9XVjUlFHG0ZlgPjLBnYZ8ipvVreXVGU\nwQhKyZReGSzGGMn1Pa5du5bjjjsvqVzK7bdfyIcffsjs2bMDj7v77rsZN24cBxxwQFI5kIHKlaxd\nu5ZjjpnJhx+uB2LfgU8RiRj++teXMwrgF7I8iqIoxYcxBsmw9IpmeWWBlpYWtmzpJpYN9RgbNz7P\nWWedxcUXX8zzzz8feNy5555LT8/fGDNmIscddx5jxkxk+fKVwMCZYy0tLWzbth5bJGAGcCBwGHAr\n1dVjAzPM+iOTTDVFUZRAMjVpSm0jrzGUERIOx/ckAeT444+XHTt2JB0zUGXhgdxonosKWgTqxa6q\nH9ziQy2PoiiKH3QdSuE47bRTOfPMU/n447eTPnv00UdZu3Zt0v6BrIIrr7yESOSowDUi3jXXrXuR\nefPOIRKppKHhrsDvpcNAa1IURVEGQmMoWeStt95iwoQJbNiwoW/flClTWLBgAcccc0zS91PFLRYs\nuJmLLppLdbV1pV155SWce+45/U7u2SrLruXdFUWBwcVQCu6SyvVGnqsN33jjjQLIqFGjZNGiRbJt\n27Z+v5+4RmTRosVF5XrSNGJFGZ4wCJdXVQ6EbVhz0UUXsXXrVubMmUNjY+OA3z/ttFM59tij+6yC\n7u5uqqp2xxZW7iWxVEo+Wb58JTNnXtBnKS1ZspDTTjs1r2NQFKV0UJdXkXH33fdw3nlzgAnA68Dl\nhMM38fTTjzNp0qS8jUPTiBVleKNpwyVOb28vF100F1gDPINdX3IdxjRw0EGf7EspzgeaRqwoSqao\noBQRQZM4jOOjjx5k8+Z2Zs68gN7e3ryMJXltjVYaVhSlf1RQioigSRzWY7sf59dC0DRiRVEyRWMo\nRYYXCK+q2osPP3wJuA64jELFMDSNWFGGJ4OJoaigFCHeJP7UU89w0UVzCYXGsHXrOs2yUhQlb6ig\nBFCKguKnnCyEcroXRSl3VFACKHVBKRd0TYuilBYqKAGooGRGLqwIXdOiKKWHrkNRhsTy5SsDS+kP\nFV3ToijDg5K3UIwxJwC3Y8VxiYjMT/hcLZQ0yKUVoRaKopQew85CMcZUAHcCnwb2B04zxkws7KhK\nk1xaEbqmRVGGByVtoRhjDgOuFZHPuPdzsRUy5/u+oxZKGuTDitAsL0UpHQZjoZR6teHdsRUUPd4A\nDinQWEoaz4qYOXNG3LqXbE78zc3NKiSKUsaUuqCkxXXXXdf3urW1ldbW1oKNpZhJLKWvk7+iDB86\nOjro6OgY0jnKweV1nYic4N6ry0tRFCULDLugPLAWGGeMGWOMqQa+CDxU4DEpiqIMS0ra5SUi240x\ns4BHiaUNv1DgYSmKogxLStrllQ7q8lIURcmc4ejyUhRFUYoEFRRFURQlK6igKIqiKFlBBUVRFEXJ\nCiooiqIoSlZQQVEURVGyggpKgejt7WXt2rX09vYWeiiKoihZQQWlAOSqkZWiKEoh0YWNeUabTSmK\nUgrowsYSQNvhKopSrqig5JmWlha2bOkGnnN7nmPr1nW0tLQUblCKoihZQAUlz2g7XEVRyhWNoRQI\nbYerKEoxM5gYigqKoiiKkoQG5RVFUZSCoYKiKIqiZAUVFEVRFCUrqKAoiqIoWUEFRVEURckKKiiK\noihKVlBBURRFUbKCCoqiKIqSFYpaUIwx/2KM+bMxZrsxZnrCZ1cYY14xxrxgjDm+UGNUFEVRLEUt\nKMCfgM8Dv/PvNMZMAk4BJgGfARYaYzJa0VkudHR0FHoIOUXvr7Qp5/sr53sbLEUtKCLykoi8AiSK\nxYnAChHZJiLdwCvAIfkeXzFQ7v9R6/2VNuV8f+V8b4OlqAWlH3YHXve9X+/2KYqiKAWiqtADMMY8\nBoz27wIEuEpEHi7MqBRFUZRMKYlqw8aYduASEXnKvZ8LiIjMd+9/DVwrIk8EHFv8N6goilKEZFpt\nuOAWSgb4b+wh4H5jzAKsq2sc0Bl0UKY/iKIoijI4ijqGYow5yRjzOnAY8J/GmF8BiEgX8FOgC3gE\nuECbniiKohSWknB5KYqiKMVPUVsoQ8UYc4Ix5kVjzMvGmMsLPZ6hYoxZYox5xxjznG/fCGPMo8aY\nl4wxbcaYxkKOcbAYY/YwxvzWGPO8MeZPxpjZbn+53F/YGPOEMeZpd483uv1lcX8expgKY8xTxpiH\n3PuyuT9jTLcx5ln3N+x0+8rp/hqNMQ+4xeLPG2MOzfT+ylZQjDEVwJ3Ap4H9gdOMMRMLO6oh82Ps\n/fiZC6wSkX2B3wJX5H1U2WEbcLGI7A8cDnzD/b3K4v5E5GNghohMAw4AjjbGHEGZ3J+POVhXtEc5\n3d8OoFVEpomIt+6tnO7v+8AjIjIJOBB4kUzvT0TKcsPGXX7lez8XuLzQ48rCfY0BnvO9fxEY7V7v\nArxY6DFm6T5/ARxbjvcH1GCTSPYrp/sD9gAeA1qBh9y+crq//wV2SthXFvcHNAB/Cdif0f2VrYVC\n8uLHNyjPxY87i8g7ACLyNrBzgcczZIwxLcBUYA32P+ayuD/nDnoaeBvoEJtcUjb3BywAvoVdR+ZR\nTvcnwGPGmLXGmLPdvnK5v7HA34wxP3Yuy8XGmBoyvL9yFpThSklnWRhj6oAHgTkisoHk+ynZ+xOR\nHQd5AdUAAAcXSURBVGJdXnsARxpjWimT+zPG/BPwjog8Q3KpJD8leX+OI0RkOvB/sS7ZIymTvx92\nCcl04IfuHjdivToZ3V85C8p6YC/f+z3cvnLjHWPMaABjzC5AT4HHM2iMMVVYMblPRH7pdpfN/XmI\nyD+w6e6foHzu7wjgc8aY14Dl2BjRfcDbZXJ/iMhb7t9erEv2EMrn7/cG8LqI/I97/zOswGR0f+Us\nKGuBccaYMcaYauCL2AWRpY4heZHnme71V4FfJh5QQvwI6BKR7/v2lcX9GWNGeRkyxpgocBzwNGVy\nfyJypYjsJSJ7Y/9f+62IfAV4mDK4P2NMjbOeMcbUAsdjq6GXy9/vHeB1Y8wEt+sY4HkyvL+yXodi\njDkBm7lQASwRkZsLPKQhYYxZhg147gS8A1yLfVJ6ANgTWAecIiLvF2qMg8VlPP0e+z+puO1KbPD6\np5T+/U0B7sU+DFRgrbDvGWNGUgb358cYcxS2VNLnyuX+jDFjgZ9j/7usAu4XkZvL5f4AjDEHAv8G\nhIDXgK8BlWRwf2UtKIqiKEr+KGeXl6IoipJHVFAURVGUrKCCoiiKomQFFRRFURQlK6igKIqiKFlB\nBUVRFEXJCiooiqIoSlZQQVHKFmPMva53xQ5jzDZjTL/FQY0xhxtjNhhjthhjHjfGLMnXWIsVY8xt\nxph17jc8qtDjUYobFRSlbBGRrwL/AvwBu0J9QqrvujpinwfC2AJ5/0dEZuZloEWMiFwC3AJ8jK3+\nrCgpUUFRyp0jsY3JDLB3P987G9v7oRLbSEiJ8UlgrdgmYYqSEhUUpdw5AlvB+CNSCIrrv7IJa8Hs\nAP47T2MrFY4EflfoQSjFjwqKUu40uHLx3aS2UL4iIv8OfAp4vlSL++UCY8zewG6ooChpUFXoAShK\nrnBB+L+6t68RICjGmJOAh1xJ+YOAxQHfmQqcD7wLVGOrPX9DRDb6vnM08HWscDVj3WbfFJGDA863\nJ3A1tonRR267RUQ2uwn8IqAF+ImIrPQdNxv4jIh8xrfvC8AMbDXY04CTsa2F9wBu9/W3yPQ+/hdo\nAv4MbMXGoRSlfwrdy1g33XK1AV8CPute/wDoTfi8HrjYvT4G6+46OeE7Z2L7luzi2/ct77zu/Uzg\nLWBX934MsBn4VcCYIsBLwHj3fm+gF/gcNs5zFzaOMxt4JuHY/wHu9b2vBm52r1/G9h45AhiJFbY7\nhngfe2JF7w+F/lvqVhqburyUcuaTxOIhrwEjjTH1vs/PA+52rz+F7XXxe+9DY8zhWIvlArH9tDHG\nHOy++0f3/kCsCMyRWEe/dcAGgmMxx2EtmNfd+/exvdgfA44GHhWR7cAJWJHwxlIHHEi866kV+KMx\nJoSd/J8SkT8ANVgr5IEh3sfr2NiSuruUtFCXl1LOjJBYPOR/3b97A88aYw4CXpSYu+dI4FWxnes8\nrsNOzCc511IF8AJwmth+9wA3AP/AtkwFwBgzEetOChKU93GuJGPMI8BPReRGd1wX0GuM2Q3bEfAL\nvuM+6a7/u4Rz/RE4HGutPAAgIm9g27cO9T4muftQQVHSQgVFKUuMMTtju1p6vIZLHTbG/An4JxH5\njvtuCDgUWOY7vgprMdwjIpenuEYj8GngAWdVeMzArtt4IvEYEflvY8zlwIXAN4BZxphviMhdnmVg\njDkV+BD4le/QI4G3ROQvvnN1uu/PAP4uIn8OGONQ72MbsDroOEVJRF1eSrnyKXzuK+ItlK9h16Z4\nHAxEiX8S3wkby3itn2uMc99JXPB3FHbdxhbXOjYOEblVRPYCJmNF5xsJXzkeaBeRrUH3E3DOGaS2\nIoZyH61YN9rGoPtQlERUUJRy5Uh8giIiHwJ/d/urXHzAw4uf+Cflv2FdQElWvDFmb2PMue5ziGWS\n4bLFWollRc3xffYfxphnfGN6AfgJyZP9XtjAvf+cn/DdzyW+zyLAYUBH4jizcB9H+c47B0UZABUU\npexw7q5jsALi53+BscA9CfuPBt7wi4xz/dyNDY77z30k8G3g30XkFeBZbIqv5176AbZ8yzpjzE7Y\nDC6Pg4BVCeP8EvCdhPG8gs3U8rgKa0F0G2P2x8Y/PI4AQqQQlCHcxw+xcZm/GGOagbeDzq8ofoyI\nFHoMipIV3AT+M2xAuhabOvs9EbnLfb4QO4GucZPmQ8BoYCp2LUgn8B8i8gP3/UrgZuyajr9iJ9jn\nROTHvmuOw2ZpvYyd9H+AneTPxArDFSLyrvvukdin/ijQgM3Gukt8a0Xc98ZiM65exMZ97gE+g7V8\nXgMuEZEt7rtfBmaJyGH9/C5DuY+vAq8Cl4su+FQGQAVFURRFyQrq8lIURVGyggqKoiiKkhVUUBRF\nUZSsoIKiKIqiZAUVFEVRFCUrqKAoiqIoWUEFRVEURckKKiiKoihKVlBBURRFUbKCCoqiKIqSFf4/\n3B55OhWmhZIAAAAASUVORK5CYII=\n",
"text/plain": [
"| \n", " | title | \n", "link | \n", "author | \n", "author_page | \n", "click | \n", "reply | \n", "time | \n", "
|---|---|---|---|---|---|---|---|
| 0 | \n", "【民间语文第161期】宁波px启示:船进港湾人应上岸 | \n", "/post-free-2849477-1.shtml | \n", "贾也 | \n", "http://www.tianya.cn/50499450 | \n", "194675 | \n", "2703 | \n", "2012-10-29 07:59 | \n", "
| 1 | \n", "宁波镇海PX项目引发群体上访 当地政府发布说明(转载) | \n", "/post-free-2839539-1.shtml | \n", "无上卫士ABC | \n", "http://www.tianya.cn/74341835 | \n", "88244 | \n", "1041 | \n", "2012-10-24 12:41 | \n", "
| \n", " | Unnamed: 0 | \n", "PassengerId | \n", "Survived | \n", "Pclass | \n", "Name | \n", "Sex | \n", "Age | \n", "SibSp | \n", "Parch | \n", "Ticket | \n", "Fare | \n", "Cabin | \n", "Embarked | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "0 | \n", "1 | \n", "0 | \n", "3 | \n", "Braund, Mr. Owen Harris | \n", "male | \n", "22.0 | \n", "1 | \n", "0 | \n", "A/5 21171 | \n", "7.2500 | \n", "NaN | \n", "S | \n", "
| 1 | \n", "1 | \n", "2 | \n", "1 | \n", "1 | \n", "Cumings, Mrs. John Bradley (Florence Briggs Th... | \n", "female | \n", "38.0 | \n", "1 | \n", "0 | \n", "PC 17599 | \n", "71.2833 | \n", "C85 | \n", "C | \n", "
| 2 | \n", "2 | \n", "3 | \n", "1 | \n", "3 | \n", "Heikkinen, Miss. Laina | \n", "female | \n", "26.0 | \n", "0 | \n", "0 | \n", "STON/O2. 3101282 | \n", "7.9250 | \n", "NaN | \n", "S | \n", "
| 3 | \n", "3 | \n", "4 | \n", "1 | \n", "1 | \n", "Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n", "female | \n", "35.0 | \n", "1 | \n", "0 | \n", "113803 | \n", "53.1000 | \n", "C123 | \n", "S | \n", "
| 4 | \n", "4 | \n", "5 | \n", "0 | \n", "3 | \n", "Allen, Mr. William Henry | \n", "male | \n", "35.0 | \n", "0 | \n", "0 | \n", "373450 | \n", "8.0500 | \n", "NaN | \n", "S | \n", "