\n",
"The random network model\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Erdös-Rényi model (1960)\n",
"\n",
"Definition: A random graph is a graph of N nodes where each pair of nodes is connected by probability p.\n",
"\n",
"### G(N, L) Model\n",
"N lableled nodes are connected with L randomly placed links. Erdös-Rényi(1959)\n",
"\n",
"### G(N, p) Model\n",
"Each pair of N labeled nodes is connected with probability p. Gilbert (1959)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## To construct a random network:\n",
"- 1) Start with $N$ isolated nodes.\n",
"- 2) Select a node pair and generate a random number between 0 and 1.\n",
"If the number exceeds $p$, connect the selected node pair with a link,\n",
"otherwise leave them disconnected.\n",
"- 3) Repeat step (2) for each of the $\\frac{N(N-1)}{2}$ node pairs."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"The probability that a random network has exactly $L$ links and $N$ nodes:\n",
"\n",
"# $p_L = C_{\\frac{N(N-1)}{2}}^L p^L (1-p)^{\\frac{N(N-1)}{2} -L}$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"$P_L$is a binomial distribution, the **expected** number of links in a random graph is\n",
"\n",
"# $
"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"
\n",
"\n",
"**The evolution of random networks**\n",
"The relative size of the giant component in function of the average degree $
"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"- 1D: For a one-dimensional lattice (a line of length N) the diameter and the average path length scale linearly with $N: dmax\\sim
"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# 邻居彼此认识吗?\n",
"Local clustering coefficient\n",
"\n",
"We need to estimate the expected number of links $L_i$ between the node’s $k_i$ neighbors. \n",
"\n",
"In a random network the probability that two of i’s neighbors link to each other is $p$. \n",
"\n",
"As there are $\\frac{k_i(k_i - 1)}{2}$ possible links between the $k_i$ neighbors of node i, the expected value of $L_i$ is\n",
"\n",
"# $
"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# In summary\n",
"\n",
"- we find that the random network model does not capture the clustering of real networks. \n",
"- Instead real networks have a much higher clustering coefficient than expected for a random network of similar N and L. \n",
"- An extension of the random network model proposed by Watts and Strogatz addresses the coexistence of high $"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# In summary\n",
"- we find that the random network model does not capture the clustering of real networks. \n",
"- Instead real networks have a **much higher clustering coefficient** than expected for a random network of similar N and L. \n",
"- An extension of the random network model proposed by Watts and Strogatz [1998] addresses the coexistence of high
\n",
"# REAL NETWORKS ARE NOT POISSON"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# BA模型 (1999)\n",
"\n",
"Barabasi (1999) Emergence of scaling in random networks.Science-509-12\n",
"\n",
"### Scaling-Free\n",
"\n",
"
\n",
"\n",
"### The Preferential Attachment Model\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# 无标度的意义"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"度分布的n阶矩被定义为:\n",
"\n",
"$
"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# 无标度的意义\n",
"> ### 在网络中随机抽取一个节点的度可以显著的不同于平均度$
\n",
"\n",
"对于不同的网络,平均度与标准差的取值"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"
\n",
"\n",
"英国的天才 第一集 Genius of Britain: The Scientists Who Changed the World (2010) https://movie.douban.com/subject/4887415/"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# 1. 连续平均场\"Continuum Mean-Field\" \n",
"### \"Mean-Field\": many -> one\n",
"The complex interaction between a large number of components can be simplified into a single averaged effect of all the other individuals on any given one.\n",
"\n",
"### \"Continuum\": discrete -> Continuous\n",
"A discrete variables that is \"smooth enough\", i.e. increase by one unit in each period, such as time steps [1], spatial jumps [2-3], and population, can be viewed as a continuous geometric structure. Any measure on this structure, like degree [1], number of unique locations visited [2], and distance [3], can be described by differential equations.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## 模型设定\n",
"* 初始状态有$m_0$个节点\n",
"* 1. 增长原则:每次加入一个节点i (加入时间记为$t_i$), 每个节点的加入带来m条边,2m个度的增加\n",
"** 其中老节点分到的度数是m,新加入的那一个节点分到的度数为m\n",
"** 那么到时间t的时候,网络的总节点数是$m_0 + t$,网络的总度数为$2mt$。\n",
"* 2. 优先链接原则:每一次从m条边中占有一条边的概率正比于节点的度$k_i$\n",
"** 那么显然,加入的越早($t_i$越小)越容易获得更多的链接数。\n",
"** 从时间0开始,每一个时间步系统中的节点度$k_i$是不断增加的。\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## 度的增长/时间依赖性\n",
"$k_i$在一个时间步获得一个度的概率表示为$\\prod (k_i) $, 那么有:\n",
"\n",
"$\\prod (k_i) = \\frac{k_i}{\\sum k_i} = \\frac{k_i}{2mt}$\n",
"\n",
"一个时间步,$k_i$随t的变化率可以表达为:\n",
"\n",
"# $\\frac{\\partial k_i}{\\partial t} = \\Delta k \\prod (k_i) = m \\frac{k_i}{2mt} = \\frac{k_i}{2t}$\n",
"\n",
"# $\\frac{\\partial k_i}{k_i} = \\frac{\\partial t}{2t}$\n",
"\n",
"# $\\int \\frac{1}{k_i} d k_i = \\int \\frac{1}{2t} dt$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## 积分结果\n",
"\n",
"# $k_i = C (2t) ^ {-0.5}$ (1)\n",
"\n",
"此时,根据模型的初始条件,每个新加入节点获得的度是m:\n",
"\n",
"$k_i(t_i) = m $ 代入公式(1)\n",
"\n",
"可以得到$C = m(2t_i)^{-0.5}$ 公式(2)\n",
"\n",
"代入公式(1),得到:\n",
"\n",
"$k_i = m (\\frac{t}{t_i})^{0.5}$ 公式(3)\n",
"\n",
"对于一个节点i,其加入网络的时间$t_i$是固定的,我们可以观察其度$k_i$随着时间的幂律关系。\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## 累积概率分布\n",
"\n",
"当我们思考一个累积概率分布的时候,我们想要的是$k_i(t) < k$的概率:$P(k_i(t) < k) $\n",
"\n",
"由公式(3),可以知道:\n",
"\n",
"$P(k_i(t) < k) = P( m (\\frac{t}{t_i})^{0.5} < k ) = P( t_i > \\frac{m^2 t}{k^2} ) = 1 - P(t_i \\leqslant \\frac{m^2 t}{k^2} )$(4)\n",
"\n",
"在初始状态$ t = 0$, 有$m_0$个节点,那么$t_{m_0} = 0$\n",
"\n",
"假设我们将节点加入的时间步是均匀的,那么$t_i$的概率是一个常数:\n",
"\n",
"$P(t_i) = \\frac{1}{m_0 + t}$ 公式(5)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### 均匀分布的性质\n",
"* 设连续型随机变量X的概率密度函数为 $f(x)=1/(b-a),a≤x≤b $, 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]。若[x1,x2]是[a,b]的任一子区间,则 $P{x_1≤x≤x_2}=(x_2-x_1) \\frac{1}{b-a}$\n",
"\n",
"根据均匀分布的性质,将公式(5)代入公式(4)得到:\n",
"\n",
"$P(k_i(t) < k) = 1- \\frac{m^2 t}{k^2} P(t_i) = 1 - \\frac{m^2 t}{k^2 (m_0 + t)} $ 公式(6)\n",
"\n",
"\n",
"对累积概率函数求微分,就可以到达概率密度函数:\n",
"\n",
"$P( k ) = \\frac{\\partial P(k_i(t) < k)}{\\partial k} = \\frac{2m^2 t}{m_0 + t} \\frac{1}{k^3}$ 公式(7)\n",
"\n",
"也就是说:$\\gamma = 3$, 与m无关。\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# 参考文献\n",
"- Barabasi 2016 Network Science. Cambridge\n",
"- Barabasi (1999) Emergence of scaling in random networks.Science-509-12.pdf\n",
"- Barabasi (1999) Mean-field theory for scale-free random networks. PA.pdf\n",
"- Albert & Barabasi (2002) Statistical mechanics of complex networks. RMP.pdf\n",
"- BA Model 计算传播百科 http://computational-communication.com/wiki/index.php?title=Mean_field_method#BA_Model\n",
"- Principle of Locality I: Hacking the Continuum Mean-Field Technique in Network Modeling http://www.jianshu.com/p/97f674267d3e\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}