
Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation
for Feature-Model Analyses

Chico Sundermann1*, Elias Kuiter2*, Tobias Heß1*, Heiko
Raab1*, Sebastian Krieter1* and Thomas Thüm1*

1University of Ulm, Ulm, Germany.
2Otto-von-Guericke University, Magdeburg, Germany.

*Corresponding author(s). E-mail(s):
chico.sundermann@uni-ulm.de; kuiter@ovgu.de;
tobias.heß@uni-ulm.de; heiko.raab@uni-ulm.de;

sebastian.krieter@uni-ulm.de; thomas.thuem@uni-ulm.de;

Abstract
Feature models are commonly used to specify the valid configurations
of product lines. As industrial feature models are typically complex,
researchers and practitioners employ various automated analyses to com-
prehend their described configuration spaces. Many of these automated
analyses require that numerous complex computations are executed on
the same feature model, for example by querying a SAT or #SAT solver.
With knowledge compilation, feature models can be compiled in a one-
time effort to a target language that enables polynomial-time queries for
otherwise complex problems. In this work, we elaborate on the poten-
tial of employing knowledge compilation on feature models. First, we
gather various feature-model analyses and study their computational
complexity with regard to the underlying computational problem and the
number of solver queries required for the respective analysis. Second, we
collect knowledge-compilation target languages and map feature-model
analyses to the languages that make the analysis tractable. Third, we
empirically evaluate publicly available knowledge compilers to further
inspect the potential benefits of knowledge-compilation target languages.

Keywords: feature modeling, knowledge compilation, SAT, #SAT

1

Chico
This is the author's version of the work. The main goal of this PDF is to give up-to date comments and information around the work, including follow-up work and already identified mistakes.

If you have any questions or comments, please get in contact with the authors.

Springer Nature 2021 LATEX template

2 On the Benefits of Knowledge Compilation for Feature-Model Analyses

1 Introduction
Product lines are commonly used to develop, test, and evolve a family of
similar products to reduce the costs compared to developing each product
separately [1–5]. Each product in a product line is composed from a set of
reusable features, which are generally shared across multiple products [3, 6].
Typically, not every combination of selected features (i.e., a configuration) is
valid and results in a functional product [7–9]. To specify the set of valid
configurations for a given product line, engineers can use feature models [2,
10, 11]. A feature model consists of a set of features and a set of constraints
limiting the valid configurations [12]. For instance, including one feature may
require in- or excluding another feature.

Manually keeping track of all constraints is infeasible, as industrial feature
models may contain thousands of features and hundreds of thousands of con-
straints [7, 13]. For example, the Linux kernel (as of November 2018) contains
more than 14,000 features and 60,000 constraints [14]. Automated reasoning
is typically used to analyze feature models, for example to check whether a
given configuration is valid (i.e., it conforms to all constraints imposed by the
feature model) [2].

Many feature-model analyses are computationally expensive [7, 9, 11, 15].
The de facto standard for analyzing feature models is to translate them into
propositional logic and automate the analysis with tools, such as SAT [11] or
#SAT [7, 9, 16] solvers. Feature models require the full expressiveness of propo-
sitional formulas [17], so checking whether a feature model has at least one valid
configuration (i.e., a satisfying assignment) is NP-complete [11]. Analogously,
computing the number of valid configurations is #P-complete [7, 9, 18]. Even
further, many feature-model analyses depend on numerous complex solver
queries [2, 7, 16]. For instance, existing tools compute for each feature whether
it is core (i.e., it appears in every valid configuration) or dead (i.e., it appears
in no valid configuration) to detect unintentional side effects in the modeling
process [19, 20]. Naively employing a SAT solver to calculate such core and
dead features requires 2 · n SAT calls (n being the number of features).

For computing feature-model analyses that require multiple solver queries,
employing knowledge compilation seems promising [21, 22]. With knowl-
edge compilation, an initial effort is taken to translate the propositional
formula for a feature model into an artifact of a knowledge-compilation
target language, such as a binary decision diagram (BDD) [23] or deter-
ministic decomposable negation normal form (d-DNNF) [24]. In theory, such
a knowledge-compilation artifact can then be used to perform repetitive
computations more efficiently [25].

However, the research on leveraging knowledge compilation for feature-
model analysis is still rather limited in terms of (a) considered analyses,
(b) considered knowledge-compilation target languages, and (c) compiler
scalability: Regarding feature-model analyses, it is well-known that some
feature-model analyses require multiple complex queries [2, 9, 16, 26–28]. How-
ever, the insights on the required computations are scattered over many works

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 3

and extracting the complexity of the computations often requires interpreta-
tion of the reader [2, 11, 16, 26, 29, 30] [ref] . Regarding knowledge-compilation
artifacts, only few knowledge-compilation target languages have been applied
to compute a few feature-model analyses [22, 31]. However, many capabili-
ties of well-known knowledge-compilation target languages [25] have not been
utilized yet for feature-model analyses. For instance, while BDDs have been
employed repeatedly [21, 32–34], target languages that are popular in other
domains, such as SDDs [35] or d-DNNFs [24, 25], have not been used or only
limited to single applications. For example, d-DNNFs have been used for enu-
meration of feature models (i.e., sampling [22, 36]), but have not been used for
SAT or #SAT queries yet, excluding the usage of compilers as black box #SAT
solvers [7, 9]. Finally, regarding compiler scalability, knowledge compilation
can only be sensibly applied for feature-model analyses if the compilation of
feature models to the respective artifact scales appropriately. If the compila-
tion takes too long or does not scale at all, the benefits (i.e., efficient queries) of
the knowledge-compilation artifact vanish. However, besides preliminary work
on some knowledge-compilation target languages [7, 21, 22], it is still largely
unknown which artifacts can be compiled from feature models in reasonable
time.

In this article, we aim towards closing these gaps by elaborating on the
potential of applying knowledge compilation for feature-model analysis with
the following contributions:

• Classifying Feature-Model Analyses To give an overview on the com-
plexity of feature-model analyses, we collect various analyses from the
literature. For each identified analysis, we assess the complexity regard-
ing the underlying computational problem (e.g., SAT or #SAT) and the
number of solver queries potentially required.

• Identifying Knowledge-Compilation Target Languages To show-
case the potential of knowledge compilation, we perform a literature
survey to identify knowledge-compilation target languages and respective
knowledge compilers. Further, we present a mapping between feature-
model analyses and knowledge-compilation target languages, indicating
which analyses are tractable (i.e., solvable in polynomial time) for which
target language.

• Evaluating Compiler Scalability Finally, we analyze the scalability
of different knowledge-compilation target languages by evaluating the
identified knowledge compilers on 53 industrial feature models.

The remainder of this article is structured as follows: In Section 2 and
Section 3, we explain feature-model analysis using a running example and
present the methodology of our literature review. In Section 4, we present
a list of feature-model analyses and classify them according to the type of
computational problem that needs to be solved. In Section 5, we list knowledge-
compilation target languages that enable polynomial-time queries for common
feature-model analyses. In Section 6, we empirically evaluate the scalability

Springer Nature 2021 LATEX template

4 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Pizza

Sauce

Tomato Hollandaise

Cheese Topping

Broccoli Pineapple Asparagus

Hollandaise → Broccoli ∨ Asparagus
Tomato → ¬Pineapple

Legend:

Feature

Mandatory

Optional

Or Group

Alternative Group

Fig. 1 Running Example: Feature Model Representing Pizza

of compiling industrial feature models to different knowledge-compilation arti-
facts with publicly available knowledge compilers. Finally, we review related
work and conclude the paper in Section 7 and Section 8.

2 Background & Running Example
A product line describes a family of products that share certain characteristics,
called features [1–5]. Each product corresponds to a composition of features (a
configuration) that appear in the product line. Typically, not every configura-
tion leads to a useful product (i.e., it may contain errors or may be inefficient
to produce). For instance, a car might be limited to have one type of gearbox,
either automatic or manual.

Feature models are the de facto standard for specifying the valid configu-
rations of a product line [2, 10, 11]. A feature model consists of a hierarchy of
features (the feature tree) and additional propositional cross-tree constraints
that further limit the set of valid configurations [11, 12]. In Figure 1, we show
an example feature model that describes the valid configurations of a pizza
product line. Each pizza requires a sauce indicated by the mandatory flag. As
indicated by the or group, a customer can select tomato or hollandaise as sauce
(or both). A pizza may further include cheese as shown by the optional flag.
Finally, exactly one of three toppings (i.e., broccoli, pineapple, or asparagus)
can be selected as part of an alternative group. In addition to the described
feature tree, two cross-tree constraints below the feature tree, expressed as
propositional formulas, specify further limitations: A customer cannot select
the pineapple topping together with tomato sauce and needs to select either a
broccoli or asparagus topping when selecting hollandaise sauce.

Formally, we define a feature model as a tuple FM = (F ,Φ) over a set
of features F and a set of constraints Φ, which includes both hierarchical
and cross-tree constraints. A configuration C = (I, E) consists of two sets
I, E ⊆ F containing included and excluded features, respectively. A feature
cannot be included and excluded in the same configuration (i.e., I ∩ E = ∅).
A configuration that satisfies all constraints Φ imposed by the feature model
is called valid. If all features are either selected or deselected (i.e., I ∪E = F),
the configuration is called complete. Otherwise, it is called partial [2].

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 5

Table 1 Translation of Feature Models into Propositional Formulas (Root, Child, Parent)

Modeling Construct Propositional Formula Intuition

Root feature R R is always required
Optional feature C ⇒ P C requires P
Mandatory feature C ⇔ P Optional + P requires C
Or group

∨
1≤i≤n Ci ⇔ P Optional + P requires at least one Ci

Alternative group
∨

1≤i≤n Ci ⇔ P∧ Optional + P requires exactly one Ci∧
1≤i<j≤n ¬(Ci ∧ Cj)

To employ standardized solvers for automated analyses, feature models
are commonly translated to propositional logic [2, 7, 12, 37–39]. Every hier-
archical constraint can be translated to semantically equivalent propositional
logic [2, 11] by applying translation rules. Table 1 shows translations that
are commonly employed in feature-model analysis [2, 19, 37, 38]. Note that
multiple semantically equivalent translations for such constraints have been
considered in the literature [2, 40]. In addition, the cross-tree constraints below
the feature tree are typically expressed as propositional formulas [41]. Thus,
without a loss of generality, we consider Φ to be a conjunction (as every con-
straint needs to be satisfied) of propositional formulas. The set of satisfying
assignments of Φ is equivalent to the set of valid configurations for the feature
model FM . As the analysis of satisfying configurations is known to be com-
putationally complex, highly-optimized logic-based tools (i.e., solvers) can be
invoked on Φ to reason about the configuration space described by the feature
model FM [7, 9, 11, 12, 38].

Two well-known solver classes for feature-model reasoning are SAT [42, 43]
and #SAT [44–46] solvers. A SAT solver is a tool that, given a propositional
formula ϕ, determines whether ϕ is satisfiable or not. That is, SAT(ϕ) ≡ true
when ϕ has at least one satisfying assignment and SAT(ϕ) ≡ false otherwise
(i.e. ϕ contains some contradiction). A #SAT solver also takes as input a propo-
sitional formula ϕ, but determines how many satisfying assignments it has,
thus generalizing the functionality of a SAT solver. That is, #SAT(ϕ) ≡ n when
ϕ has exactly n satisfying assignments. In Section 4, we give a detailed account
of how SAT and #SAT solvers can be applied to analyze the configuration
spaces described by a feature model.

CNF, a specialization of NNF, is a common representation for proposi-
tional formulas. A formula is in negation normal form (NNF) when all its
negations occur only in literals (so, conjunctions and disjunctions cannot be
negated). Further, a formula is in conjunctive normal form (CNF) when it is
a conjunction of clauses (i.e., disjunctions of literals) [47]. CNF in particular
is highly relevant because both SAT and #SAT solvers typically require it as
input format.

To solve arbitrary SAT and #SAT problems, exponential time is required
in the worst case, as SAT is NP-complete [48] and #SAT is #P-complete [49].
The complexity of these problems can be a particular issue if numerous sim-
ilar solver queries should be executed. A query is a computational operation

Springer Nature 2021 LATEX template

6 On the Benefits of Knowledge Compilation for Feature-Model Analyses

on a given instance (e.g., a feature model) without adapting the instance [25].
To improve query performance, knowledge-compilation target languages, which
typically enable faster querying than CNF, can be used. With knowledge com-
pilation, a formula is compiled once into a knowledge compilation artifact
(i.e., an instance of a knowledge-compilation target language), which can then
be reused for numerous tractable (i.e., solvable within polynomial time com-
plexity) queries, in the hope of reducing the overall required query time. In
Section 5, we review knowledge-compilation target languages that are known
to improve the asymptotic runtime of feature-model analyses (i.e., making
them tractable).

3 Methodology
Our overall goal is to elaborate on the potential of applying knowledge-
compilation to feature-model analysis. Thus, we aim to provide a reasonable
representation of problem settings in feature-model analyses and the applica-
bility of knowledge-compilation target languages for those problem settings.
To this end, we performed (1) an expert survey to gather relevant feature-
model analyses, (2) a literature survey to collect knowledge-compilation
target languages and knowledge compilers (3), a GitHub search to identify
further compilers. In the following, we describe our methodology used to
extract information on feature-model analyses (results discussed in Section 4),
knowledge-compilation target languages (results discussed in Section 5), and
knowledge compilers (results discussed in Section 6).

Gathering Feature-Model Analyses

To motivate the relevance of knowledge compilation for feature-model analyses,
we aim to showcase algorithmic problems relevant in the feature-modeling
domain. We identify relevant problems in two phases: First, we collect feature-
model analyses considered in the literature and applied in practice. Second,
we categorize each analysis into the type of algorithmic problem (e.g., SAT
or #SAT) that needs to be solved for the analysis. Further, we provide worst-
case complexities with regard to the number of computations required for each
analysis.

In the first phase, we performed an expert survey to identify articles based
on our expertise in the feature-modeling domain. Hereby, we consider work
that proposes analyses or already existing surveys on feature-model analysis [1,
2, 26, 50]. Each of the authors suggested a variety of articles to include in
the survey. While our list of considered articles may fail to cover all available
feature-model analyses, we expect that our list is a reasonable representation of
analyses and in particular of underlying algorithmic problems in the literature.

In the second phase, we used the list of gathered analyses to derive an initial
set of problem classifications. Afterwards, we performed a first categorization
of each analysis into the different problem classes. Then, we iteratively updated
this categorization according to feedback of each author, also evaluating and

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 7

10 target languages
10 compilers

10 target languages
7 compilers

125 papers

7 compilers

Literature Review

1050 papers

Filter by Inclusion and
Exclusion Criteria

Extract Data

Keyword Search

Remove Duplicates

Github Search

Github Search

Knowledge Compilation

(I1-I3, E1-E3) (D1-D9)

Knowledge Compilation
Target Language (D5) +

Fig. 2 Methodology for Gathering Knowledge-Compilation Target Languages & Knowledge
Compilers

eventually updating the initially proposed classifications. Note that while we
aim to identify popular and efficient solutions, we may not identify the least
complex solution for every considered feature-model analysis.

Gathering Knowledge-Compilation Target Languages &
Knowledge Compilers

To accurately assess the potential of knowledge compilation in practice, we
elaborate on the capabilities of knowledge-compilation target languages and
scalability of publicly available knowledge compilers. To this end, we first con-
duct a literature survey to identify considered knowledge-compilation target
languages and published knowledge compilers. Second, we perform a GitHub
search for each of the identified knowledge-compilation target languages to col-
lect further compilers. In Figure 2, we provide an overview of the methodology
for our survey.

In the first phase, depicted on the left side of Figure 2, we start by gath-
ering relevant literature. We perform a keyword search in common databases,
namely ACM, Springer, and IEEE. Hereby, we search for papers including the
term "knowledge compilation". After collecting the set of papers, we fil-
ter according to our inclusion and exclusion criteria described in Table 2 to
remove work not related to knowledge compilation of translating propositional
formulas to target languages enabling more tractable queries. Hereby, we also
exclude knowledge compilation of higher order logics (e.g., first-order logic)
as we limit our elaborations on feature models representable as propositional
logic (cf. Section 2).

After reducing the considered literature set, we aim to identify considered
knowledge-compilation target languages and referenced knowledge compilers.
In particular, we extract the data shown in Table 3. With D1–D4, we collect
meta data about the submission. For D5, we collect all knowledge-compilation
target languages mentioned in the paper, which we later use for our GitHub

Springer Nature 2021 LATEX template

8 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Table 2 Inclusion (I) and Exclusion (E) Criteria

Index Description

I1 Knowledge compilation is employed on propositional logic.
I2 Considered languages are tractable for queries relevant for feature-model analysis.
I3 Full text of the publication is available.

E1 Publication is not in English.
E2 Publication is not peer-reviewed.
E3 Publication is subsumed by another paper in the dataset.

Table 3 Data Extraction

Index Data Description

D1 Title Title of Paper
D2 Authors Authors of Paper
D3 Venue Publishing Venue
D4 Year Year of Publishing
D5 Target Languages List of Knowledge-Compilation Target Languages
D6 Compiler Availability Availability Score: (1) N/A, (2) Not Public, (3) Public
D7 Compiler URL URL to Compiler if Publicly Available
D8 Input Language Input Language for the Compiler (e.g., CNF)
D9 Target Language Target Language of the Compiler (e.g., BDD)

search. With D6, we record the availability of a compiler using the three cat-
egories (1) no compiler presented, (2) compiler is presented but not publicly
available, and (3) compiler is publicly available. If available, we collect the
URL to the considered compiler in D7. Lastly, we collect the input and target
language of the compiler with D8 and D9, respectively.

We expect that some compilers have not been published in peer-reviewed
work. Thus, after extracting the data in our literature survey, we perform a
search on GitHub looking for further knowledge compilers. Hereby, we perform
two searches on the GitHub database:

1. "knowledge compilation" in:name,description,topics,readme
2. For each target language considered in some paper of the survey (D5):

<target_language> in:name,description,topics,readme
During the GitHub search, we include tools that accept dimacs (CNF)

as input and compile to a considered target language. If the README and
documentation do not provide sufficient information on how to build or run the
tool, we exclude it. For BDDs, we use the knowledge compilers that we already
identified in previous work with a similar procedure [21]. There, we collected
hundreds of BDD libraries available on GitHub and extracted three popular
tools which we use directly instead of performing another GitHub search.

By combining the set of knowledge compilers found in the survey and
the GitHub search we aim to find a large variety of knowledge compilers.
While we likely miss some available knowledge compilers, we expect to collect
a reasonable representation of state-of-the-art knowledge compilers. With the

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 9

collected compilers, we examine their scalability for feature-model analysis in
our empirical evaluation (cf. Section 6).

4 Classifying Feature-Model Analyses
Feature-model analyses depend on a variety of complex solving techniques,
such as SAT [2] or #SAT [7, 9]. In practice, the majority of analyses are
commonly computed by repetitively invoking a black-box solver on similar for-
mulas [2, 10, 11, 26, 27, 29, 51–53]. In this section, we discuss various analyses
to showcase the potential benefits of employing knowledge compilation. We
present relevant solving techniques by classifying each analysis with regard
to the algorithmic problem that it is typically reduced to. We also give an
asymptotic assessment on the computational complexity of each analysis.

To assess the complexity of the gathered analyses, we elaborate on the
number of queries that are required for an analysis on a given feature model.
Hereby, we consider two dimensions: First, we provide the number of queries
asymptotically required to compute a result for the corresponding analysis.
Second, we differentiate between static analyses that are one-time computa-
tions on the feature model and dynamic analyses that can be applied numerous
times with differing inputs, for instance in interactive settings. For example,
while analyzing a partial configuration only requires one query, an interactive
setting may require various analyses on different partial configurations but on
the same unchanged feature model (dynamic). Other analyses just depend on
the feature model which we consider as fixed and, thus, multiple computations
do not yield additional results (static).

4.1 SAT-Based Analyses
In this section, we present different feature-model analyses that are typically
based on SAT. In particular, given a propositional formula representing the
feature model, possibly imposed with assumptions that (de-)select features,
the satisfiability is checked to compute results for a given analysis. In the
literature, a large variety of analyses have been proposed that are used for
debugging, testing, sampling, and configuring [2, 27, 54–56]. Table 4 gives an
overview of the collected feature-model analyses. The column Queries indicates
the number of queries that are required for the analysis in the worst case (e.g.,
if implemented naively). Repeatability indicates whether an analysis is static
or dynamic.

Consistency of Feature Models

For the first category, the analyses depend on the consistency of the entire
feature model, which indicates whether at least one configuration is valid. The
cross-tree constraints of a feature model may include a contradiction within
each other or with tree constraints. In this case, we consider a feature model

Springer Nature 2021 LATEX template

10 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Table 4 Analyses Based on Consistency (|F | = #Features, |VC | = #Valid Configurations)

Type Analysis Queries Repeatability

Cons. of Feature Models Void Feature Model [2] 1 Static

Cons. of Features Core Features [2] O(|F |) Static
Dead Features [2] O(|F |) Static
Variant Features [2] O(|F |) Static

Cons. of Partial Conf. False-Optional Features [2] O(|F |) Static
Atomic Sets [54] O(|F |2) Static
Valid Partial Configuration 1 Dynamic
Decision Propagation [51] O(|F |2) Dynamic
Conditionally Core Features [2] O(|F |) Dynamic
Conditionally Dead Features [2] O(|F |) Dynamic
t-Wise Sampling [27] O(|F |t) Static
Non-Uniform Random Sampling O(1) Dynamic
Most-Enabled-Disabled [55] O(1) Static
One Enabled [55] O(|F |) Static
One Disabled [55] O(|F |) Static

Cons. of Formulas Redundant Constraint [2] O(|Φ|) Static
Feature-Model Edits [56] O(1) Static

to be inconsistent. A consistent feature model is generally required for follow-
up analyses and, thus, commonly checked first. Checking the consistency of a
feature model typically corresponds to a single SAT query.

Definition 1 (Consistency of Feature Models). A given feature model FM =
(F,Φ) is considered consistent if and only if its constraints in Φ do not con-
tradict each other. Determining feature model consistency can be reduced to
a satisfiability check as follows: CO(FM) ≡ SAT (Φ)

The consistency of a feature model is used to check for a void [2] (i.e.,
inconsistent) feature model, which indicates a major design error. With a void
feature model, it is impossible to derive products as every possible configura-
tion of features is invalid. For a given feature model, a single consistency-query
is sufficient for checking voidness. The feature model depicted in our running
example is consistent. For instance, the configuration {Pizza, Sauce,Tomato}
violates no constraint.

Consistency of Features

For many analyses, the consistency of the entire feature model is not suffi-
cient. Some depend on the consistency of features, which indicates whether
the feature is included in at least one valid configuration [2, 38]. Checking
the consistency of numerous features typically requires solving multiple SAT
problems, up-to the total number of features in a feature model in the worst
case.

Definition 2 (Consistency of Feature). A given feature f ∈ F is considered
consistent in the feature model FM = (F,Φ) if and only if the feature f can be

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 11

selected without violating any constraints in Φ. The consistency of a feature
can be reduced to a satisfiability check as follows: CO(FMf) ≡ SAT (Φ ∧ f).

The consistency of features is, for instance, used to identify dead features [2]
which do not appear in any valid configuration. To detect all dead features,
we need to solve a SAT problem for every single feature in the worst case [11].
Analogously, detecting core features (i.e., features that appear in every valid
configuration) and variant features (i.e., features that appear in some, but not
all valid configurations) requires a SAT call for each feature in the worst case,
too. The core, dead, and variable features of a feature model correspond to
the backbone of its formula, which can be computed efficiently in practice [57];
however, a linear number of SAT calls is still required in the worst case. Each
status of a feature, namely core, dead, and variant, is fixed for one version of
a feature model. Hence, we consider each computation to be static.

In our running example, Sauce is a core feature as it is a mandatory child
of the (always required) root feature. Thus, it is necessary to provide at least
one type of sauce to sell pizza. Another example is Pineapple, which is a dead
feature, possibly indicating a design error in the feature model.

Consistency of Partial Configurations

Various consistency-based analyses operate on partial configurations (i.e., a
configuration that includes and excludes several, but not all features) [2]. A
partial configuration is considered consistent if and only if there is at least
one valid configuration that includes and excludes all features that are respec-
tively included and excluded by the partial configuration. Analogously to
consistency of features, computing the consistency of one partial configuration
typically corresponds to a SAT call under assumptions (i.e., assigning literals
a truth value). Depending on the analysis, it may be required to compute the
consistency of various partial configurations.

Definition 3 (Consistency of Partial Configurations). A given partial config-
uration C = (I, E) is considered consistent in the feature model FM = (F,Φ)
if and only if the selection of all included features and deselection of all
excluded features does not violate any constraints in Φ. The consistency of
a partial configuration can be reduced to a satisfiability check as follows:
CO(FMC) ≡ SAT (Φ ∧∧

i∈I i ∧
∧

e∈E ¬e).

The consistency of a partial configuration is regularly employed for analy-
ses in the product-configuration process [2, 58]. For instance, checking whether
the selection of a user can still lead to a valid complete configuration (i.e., is
a valid partial configuration) and, thus, a usable product is often employed to
implement configuration editors. This can be extended by decision propagation,
which computes what features must (i.e., conditionally core) or cannot (i.e.,
conditionally dead) be selected anymore given a partial configuration. Deci-
sion propagation requires SAT calls up to the number of open features (i.e.,

Springer Nature 2021 LATEX template

12 On the Benefits of Knowledge Compilation for Feature-Model Analyses

not included or excluded in the partial configuration) for each partial config-
uration [51]. Typically, decision propagation is performed after every decision
of the user (i.e., selection or deselection of a feature) over the remaining open
features, thus requiring up to |F |2

2 SAT calls to derive a complete configura-
tion. As multiple configurations may be configured for a given feature model,
decision propagation, valid partial configuration, conditionally core features,
and conditionally dead features can be employed many times and, thus, we
consider them to be dynamic analyses.

Several t-wise sampling algorithms depend on computing the consistency
of a partial configuration [27, 59–65]. Whenever a given t-wise interaction
T = {a, b, ...} is supposed to be covered by a configuration C = (I, E) with
T ⊆ (I ∪ E), the validity of this (partial) configuration must be ensured.
Additionally, the validity of a t-wise interaction itself can be checked, before
attempting to cover it, by interpreting it as a partial configuration. As one t-
wise sample fully covers the t-wise interactions over a feature model, multiple
computations for the same t are typically not beneficial. Thus, we consider
t-wise sample as static analysis.

Non-uniform random sampling computes a list of configurations of a given
size. To this end, each configuration is generated by finding one random satis-
fying assignment of the feature-model formula. An algorithm may forbid the
generation of duplicated configurations, which makes the problem of finding
satisfying assignments progressively more difficult. As different random sam-
ples may intentionally be derived various times, we consider the non-uniform
random sampling as dynamic.

Other sampling algorithms, such as most-enabled-disabled, one-enabled, and
one-disabled, compute a fixed-size list of valid configurations with specific prop-
erties. Most-enabled-disabled computes exactly two configurations [55]. One
with a minimal number of selected features and one with a maximal number of
selected features. One-enabled computes one configuration per feature f ∈ F ,
which has the feature f selected and as many other features as possible dese-
lected [55]. In contrast, one-disabled also creates one configuration per feature
f ∈ F , but deselects the feature f and tries to included as many other fea-
tures as possible [55]. We consider each of the three sampling approaches to
be static as the respective samples are supposed to be stable for a given fixed
feature model.

An atomic set describes features that behave as a unit (i.e., are always
simultaneously included or excluded) [30]. In the worst case, the consistency
of partial configurations corresponding to all pairs of features needs to be
covered, leading to up to four SAT calls (i.e., Φ∧ a∧ b, Φ∧ a∧¬b, Φ∧¬a∧ b,
Φ ∧ ¬a ∧ ¬b) for each of the pairs. To reduce this effort, other analysis results
can be leveraged when computing atomic sets (e.g., the formula’s backbone
always corresponds to one atomic set). Computing atomic sets is static, as
they remain equal for one version of a feature model.

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 13

Consistency of Formulas

Some analyses depend on arbitrary adaptations of the feature-model formula.
While some analyses could be reduced to the consistency of features or partial
configurations, applying assumptions to the original formula is often expressive
enough.

Definition 4 (Consistency of Formula). For a given feature model FM =
(F,Φ), the formula Φ′ corresponds to an arbitrarily adapted formula Φ′ =
(Φ \ Φremoved) ∪ Φadded with Φadded and Φremoved being the set of added
and removed clauses. The consistency of the formula Φ′ can be reduced to a
satisfiability check as follows: CO(Φ′) ≡ SAT (Φ′).

When developing a feature model, some constraints may have no impact on
the configuration space as their induced limitations are already expressed by
other constraints [2]. Detecting such redundant constraints allows developers to
clean their feature model to improve readability. Checking for one redundant
constraint R can be performed by having a SAT call on Φ\R ⇒ R. To check all
constraints for redundancy, up to |Φ| queries are required. As the constraints
for a fixed feature model remain equal, we consider the analysis to be static.

There are many potentially insightful properties for comparing two feature
models, such as differences in the set of features or set of cross-tree con-
straints [66]. While many of those depend on syntactical properties and can be
easily extracted, other approaches allow insights on the semantic differences
of two feature models [56, 66]. Thüm et al. [56] propose to classify edits to
feature models into four types, namely generalization (i.e., added valid configu-
rations), specialization (i.e., removed valid configurations), arbitrary edit (i.e.,
both added and removed), and refactoring (i.e., equal configuration space). To
detect the edit type, FM1 ⇒ FM2 and FM2 ⇒ FM1 is checked.

4.2 #SAT-Based Analyses
In this section, we present analyses that are typically based on computing
the number of valid configurations of a feature model. Computing the num-
ber of valid configurations enables a variety of analyses that can be used for
debugging, development support, economical estimations, and statistical infer-
ences [26]. A common method to compute the number of valid configurations
is reducing the problem to #SAT [7, 9, 26, 50]. Table 5 gives an overview on the
collected analyses based on #SAT indicating the complexity of each analysis
w.r.t. the number of queries and repeatability.

Cardinality of Feature Models

Analogous to SAT-based analyses, the first type of #SAT-based analyses
depends on analyzing the entire feature model [26]. The cardinality of feature
models corresponds to the number of all valid configurations induced by the

Springer Nature 2021 LATEX template

14 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Table 5 Analyses Based on Cardinality

Type Analysis Number of Queries Repeatability

Card. of Variability Factor [13] 1 Static
Feature Models Variability Reduction [26] 1 Static

Degree of Orthogonality [67] 1 Static
Maintainability Prediction [68] 1 Static
Configuration Relevance [26] 1 Static
Cost Savings of Product Line [69] 1 Static

Card. of Homogeneity [28] O(|F |) Static
Features Atomic Set Candidates [26] O(|F |) Static

Feature Prioritization [26] O(|F |) Static
CTC Restrictiveness [26] O(|F |) Static
Degree of Reuse [70] O(|F |) Static
Optimize Configuring [71, 72] O(|F |) Static
Payoff Threshold [50] O(|F |) Static

Card. of Interactive Configuration [26] O(|F2|) Dynamic
Partial Conf. Uniform Random Sampling [16] O(|F |) Dynamic

Rating Feature Interactions [26] O(|F2|) Dynamic

Card. of Rating Errors [9] 1 Dynamic
Formula Variability of Feature Subsets [26] 1 Dynamic

feature model. The cardinality of a feature model can be computed by invoking
a #SAT solver on the formula representing the feature model.

Definition 5 (Cardinality of Feature Models). The cardinality #FM of a
feature model FM = (F,Φ) is defined as the cardinality of the set of valid con-
figurations |VC |. The feature-model cardinality can be reduced to computing
a #SAT problem as follows: #FM ≡ #SAT(Φ).

Various analyses depend on the cardinality of a feature model [26]. The
variability factor describes the share of valid configurations compared to all
2|F | configurations [13]. Variability reduction corresponds to using the change
in cardinality after a new revision of the feature model to, for instance, detect
errors [26]. Still, all analyses depend on a single query per feature model [26].

In our running example in Figure 1, there are 14 valid configurations
(i.e., 14 different pizzas that can be ordered). As there are overall 29 = 512
theoretically possible configurations, the variability factor is 14

512 ≈ 2.73%.

Cardinality of Features

Other analyses depend on knowing the number of valid configurations that
contain a certain feature (i.e., the cardinality of that feature). Computing the
cardinality of a feature is typically reduced to invoking a #SAT solver on the
formula representing the feature model with addition of an assumption for that
feature.

Definition 6 (Cardinality of Features). The cardinality #FMf of a feature
f ∈ F given a feature model FM = (F,Φ) is defined as the cardinality of the

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 15

set of valid configurations that contain the feature f (i.e., |{C = (I, E) | C ∈
VC , f ∈ I}|). The feature cardinality can be reduced to computing a #SAT
problem as follows: #FMf ≡ #SAT(Φ ∧ f).

The cardinality of features can be used for economical estimations when
considering to develop a family of products as product line [50, 70]. For
instance, it may be beneficial to prioritize features that appear in many valid
configurations to allow building more distinct products earlier in the devel-
opment process [50]. Further, one may consider the payoff threshold, which
indicates when the additional effort for building a feature for reuse in a prod-
uct line is worth. A cardinality of the feature being higher than the payoff
threshold may indicate that reusing the feature is beneficial. For both analy-
ses, namely feature prioritization and payoff threshold, the cardinality for each
feature of interest needs to be computed inducing linear effort in the worst
case (i.e., O(|F |)).

Cardinality of features can also be employed to extract information about
the variability of the feature model [26]. Homogeneity describes the similarity
of valid configurations induced by a feature model [28]. The degree of reuse
indicates the benefits of developing a software product line compared to stan-
dalone products by comparing the number of valid configurations induced
by common features (i.e., features appearing in more than two valid config-
urations) and all features [70]. All features in an atomic set share the same
cardinality. Hence, the cardinality of features can be used to identify atomic set
candidates to reduce the number of interactions that need to be checked [26].
All three metrics listed above depend on the share of valid configurations each
feature appears in and, thus, requires by definition the cardinality of each
feature. Cross-tree constraint (CTC) restrictiveness describes how the cross-
tree constraints impact the share of valid configurations a feature appears in
compared to the limitations of the tree hierarchy [26]. As analyzing the cross-
tree constraint restrictiveness may be beneficial for every feature, up to |F |
invocations may be employed.

Several strategies have been proposed for ordering features to select when
configuring products [71, 72]. According to Mazo et al. [72], it may be reason-
able to configure features with a high cardinality first as they tend to be more
important in the product line. Selecting features with a small cardinality first
may also be useful to accelerate the configuration process, as selecting these
feature vastly reduces the number of remaining valid configuration and, thus,
potentially the number of remaining decisions [71]. Fully sorting the features
by their cardinality requires up to |F | #SAT calls. Given a fix feature model
revision, all analyses dependent on the cardinality of features are static as the
cardinalities remain equal.

Cardinality of Partial Configurations

Further analyses are based on the number of valid configurations that include
some and exclude other features (i.e., conform to a partial configuration) which

Springer Nature 2021 LATEX template

16 On the Benefits of Knowledge Compilation for Feature-Model Analyses

we refer to as cardinality of a partial configuration. Note that the cardinality
of partial configurations is a generalization of the cardinality of a features.

Definition 7 (Cardinality of Partial Configurations). The cardinality #FMC ′

of a partial configuration C ′ = (I ′, E′) given a feature model FM = (F,Φ)
is defined as the cardinality of the set of valid configurations that include all
selected features and exclude all deselected features f (i.e., #FMC ′ = |{C =
(I, E) | C ∈ VC , I ′ ⊆ I, E′ ⊆ E}|). The cardinality of a configuration can be
reduced to computing a #SAT problem as follows: #FMC ′ ≡ #SAT(Φ∧∧i∈I i∧∧

e∈E ¬e)

The cardinality of partial configurations can be used for uniform random
sampling, which computes a sample of configurations where each valid con-
figuration has the same chance to appear in the sample [16, 26, 52]. While
several algorithms have been proposed [22, 73], uniform random sampling can
be reduced to #SAT [52]. Features are added to the configuration iteratively
and for each feature the probability with which a feature needs to be included
is computed. The probability is derived from the relative share of valid config-
urations the feature appears in based on the current partial configuration (i.e.,
the already included and excluded features). In the worst case, the probability
for each feature (i.e., O(|F |)) needs to be computed requiring one #SAT call
per feature. Depending on the use case, many configurations for a single feature
model may be required and, thus, we consider the analysis to be dynamic.

While t-wise sampling is generally based on SAT (cf. Section 4.1), the
cardinality of partial configurations can be used to potentially improve the
sampling process. The runtime and sample size depends on the prioritized fea-
ture interactions for coverage. Explicitly prioritizing interactions that appear
in few valid configurations may be beneficial as interactions with a high cardi-
nality are more likely to be covered anyhow [26]. As interactions remain equal
for a fixed feature model, we consider the analysis to be static.

When interactively configuring a product, it may be beneficial to indicate
the consequences of a decision for the user. For instance, providing the number
of remaining valid configurations after each decision may be helpful for the
user [26]. This information can be extracted by computing the cardinality
of partial configurations for each open (i.e., neither selected nor deselected)
feature. Analogously to decision propagation, the computation needs to be
done for all remaining features for each selection made and, thus, requires
O(|F |2) #SAT calls. Further, many configurations can be derived, making the
analysis dynamic.

Cardinality of Formulas

Analogously to SAT-based analyses, assumptions are not necessarily sufficient
for #SAT-based analyses. Model counting on adapted formulas (e.g., by adding
constraints or applying a projection) allows for further analyses.

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 17

Table 6 Analyses Based on AllSAT

Type Analysis Number of Queries Repeatability

Model Enumeration All Products [2] 1 Static
Filter [2] 1 Dynamic

Definition 8 (Cardinality of Formulas). For a given feature model FM =
(F,Φ), the cardinality #Φ′ of a formula corresponds to the number of valid
configurations induced by an arbitrarily adapted formula Φ′ = (Φ\Φremoved)∪
Φadded with Φadded and Φremoved being the set of added and removed clauses.
The cardinality of the formula Φ′ can be reduced to a #SAT problem as follows:
#Φ′ = #SAT(Φ′).

The cardinality can be used to rate errors [9]. For instance, an error may
appear if one of two features A and B is present. Adding a constraint A ∨
B to the formula and then invoking a #SAT solver results in the number
of valid configurations the error appears in. An error that appears in many
valid configurations may be more critical than another error that has a similar
severity but appears in fewer valid configurations. Rating an error requires one
#SAT call. However, for the same system there may be many errors and, thus,
we consider the analysis to be dynamic.

In some cases, one is only interested in the variability of a subset of
features [9]. For instance, only considering safety-critical features may be bene-
ficial. Computing the variability for a feature subset can be done by performing
a projection [74] (also called slice in the feature-modeling domain [75, 76]) and
then invoking #SAT once. We further discuss projection in Section 4.4. Alter-
natively, projected model counting can be applied [74]. Note that projected
model counting is considered to have a higher computational complexity than
regular model counting [74, 77]. In particular, projected model counting is
in #PNP while model counting is #P-complete [74]. As potentially numerous
feature subsets can be analyzed, we consider the analysis to be dynamic.

4.3 AllSAT-Based Analyses
For the third category, we present two analyses based on enumerating valid
configurations induced by a feature model. Table 6 provides an overview on
the analyses based on enumeration.

In some cases it may be beneficial to compute all products that can be
derived from feature model [2]. The set of products (or valid configurations)
could then be used to identify modeling errors or as test cases. As the set of
valid configurations is equivalent to the set of satisfying assignments for the
corresponding formula, computing all products can be reduced to solving one
AllSAT problem. Often one is not interested in all valid configurations but a
subset. A filter corresponds to deriving only valid configurations that conform
to a partial configuration [2]. Computing all valid configurations for one filter

Springer Nature 2021 LATEX template

18 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Table 7 Analyses Based on Algebraic Operations

Type Analysis Number of Queries Repeatability

Algebraic Feature-Model Slicing [76] 1 Dynamic
Feature-Model Composition [78] 1 Dynamic
Feature-Model Differences [66] 1 Dynamic

corresponds to a single AllSAT call. As there are potentially numerous filters,
the analysis is dynamic.

4.4 Algebraic-Based Analyses
Some feature-model analyses are also based on algebraic operations, such as
building the conjunction of two feature models. Table 7 shows an overview on
the feature-model analyses based on algebraic operations.

Feature-model slicing removes a set of features from a feature model with-
out changing the dependencies between other features [75, 76]. Given a feature
model FM = (F,Φ) and a feature set FS ⊆ F the slice of a feature model cor-
responds to FM ′ = (F \FS ,Φ

′) such that the set of all satisfying assignments
of Φ′ is given by AΦ′ = {a \ FS | a ∈ AΦ} where AΦ is the set of satisfy-
ing assignments of Φ. Slicing a feature entails creating new clauses within the
feature-model formula, which have to be checked for redundancy. The amount
of new clauses is dependent on which feature is being sliced. In other domains,
such a transformation for propositional formulas is also known as existential
quantification [75], projection [74], and forgetting [25].

Feature-model composition corresponds to building a feature model rep-
resenting the union of set valid configurations induced by two other feature
models. The composition can be computed by a conjunction as follows: Given
two feature models FM1 = (F1,Φ1) and FM2 = (F2,Φ2) the composition
corresponds to Φ1∧Φ2. While computing the composition for two feature mod-
els always computes equivalent results, a given feature can be compared to
numerous feature models. Hence, we consider the analysis to be dynamic.

Feature-model differences compare two feature models with respect to the
underlying formula Φ [66]. Acher et al. [66] compute a new feature model rep-
resenting the differences in configuration spaces of the two considered feature
models. To compute this feature model, Acher et al. [66] derive a formula
which is satisfied by each assignment that satisfies exactly one of the corre-
sponding feature models. Computing the feature-model differences depends on
conjunction and negation of feature-model formulas [66]. For two feature mod-
els FM1 = (F1,Φ1) and FM2 = (F2,Φ2), the formula (Φ1∧¬Φ2)∧(Φ2∧¬¬Φ1)
represents the valid configurations that appear in exactly one of the feature
models. Analogously to feature-model composition, we consider the analysis
to be dynamic as a fixed feature model can be compared to various feature
models.

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 19

4.5 Summary
The potentially high number of queries on the same feature model motivates
employing knowledge compilation. All 40 analyses presented above depend
on computational complex problems (i.e., NP-complete or harder). 32 of the
analyses potentially depend on multiple queries on the same feature model.
Further, several analyses are often invoked multiple times which results in even
more queries on the same formula.

Currently, it is not trivial for researchers and practitioners to select a
promising knowledge-compilation target language. As the presented feature-
model analyses are based on different computational problems (e.g., SAT or
#SAT), the queries of interest vary depending on the use case. Thus, iden-
tifying a knowledge-compilation target language that both (1) supports fast
queries of interest and (2) can be compiled efficiently, requires expertise on
capabilities and performance of target languages.

5 Identifying Knowledge-Compilation Target
Languages

In this section, we present all knowledge-compilation target languages we iden-
tified in our survey that are tractable for at least one feature-model analysis.
A computational problem is tractable for a given knowledge-compilation tar-
get language if and only if an artifact of that language allows computing a
result for the given problem in polynomial time with respect to the size of the
artifact [25]. Further, we consider a feature-model analysis to be tractable for
a target language if its underlying computational problem that needs to be
solved is tractable for that target language. We envision that this knowledge
on tractable analyses can guide researchers and practitioners to select suitable
knowledge-compilation target languages for implementing reasoning engines.
In the following, we describe defining properties for each target language,
provide simple examples, and list the types of problems that are tractable
when solved by using a knowledge-compilation artifact (i.e. an instance of the
respective target language).

5.1 Survey Results
In our literature survey (cf. Section 3), we processed a total of 1,050
publications. After applying inclusion and exclusion criteria, 125 papers
remained that address knowledge compilation of propositional formulas to
knowledge-compilation target languages allowing tractable queries relevant for
feature-model analysis.

Overall, we identified 10 target languages with overall 22 variants relevant
for feature-model analysis (considering tractable queries). In Table 8, we show
the target languages we identified, their variants, and references that discuss
these target languages in further detail. In the following section, we limit the
elaborations on the main target languages we identified and refer to the listed

Springer Nature 2021 LATEX template

20 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Table 8 Literature Survey Result: Identified Knowledge-Compilation Target Languages

Target Language Variants References

Horn Horn [80]
EPCCL EPCCL [81]
DNF DNF [82]
DNNF DNNF [83, 84]
d-DNNF d-DNNF [85–87]

Decision-DNNF [85–87]
s-d-DNNF [84, 85, 87]
s-Decision-DNNF [84, 85, 87]

EADT EADT [88]
SDD SDD [35, 89]

ZSDD [90]
Decision-SDD [91]

BDD BDD [92]
FBDD [93]
OBDD [92]
ROBDD [92]
ZBDD/ZDD [94]
C-OBDD [95]
C-NSOBDD [95]
DSDBDD [96]
TBDD [97]

MODS MODS [25]

publications for details on the variants (cf. Table 8). For BDDs, we consider
reduced ordered BDDs (ROBDDs) as default if not stated otherwise which
follows the literature on BDDs [23, 79]. Note that the list of references in
the rightmost column does not include every work that mentions the target
language; rather, we picked publications that provide evidence for our claims
and discussions in the remainder of this section.

5.2 Knowledge-Compilation Target Languages
In Table 9, we provide an overview on the tractability of each category of
feature-model analysis we described in Section 4 for the identified knowledge-
compilation target languages. A ✓ indicates the feature-model analysis
is tractable for the respective knowledge-compilation target language. For
instance, CNFs (which we include as a baseline for our comparison) are not
tractable for any of the considered analyses, while MODS are tractable for all
analyses. For CNF, DNF, DNNF, d-DNNF, PI, IP, and MODS the mapping
to tractable feature-model analysis is based on the knowledge-compilation map
provided by Darwiche and Marquis [25]. The remaining mappings are based
on literature targeting the specific target language [80, 81, 88, 89, 92, 98].
Note that slicing (i.e., forgetting) is not tractable for OBDDs but for ROBDDs
which we consider here [92, 98].

Consistency of formula and cardinality of formula cannot be generally
applied for knowledge compilation. Both analysis types, depend on arbitrarily
changed formulas and, thus, not on a fixed feature-model instance. While some

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 21

Table 9 Tractability of Feature-Model Analyses for Knowledge-Compilation Target
Languages

SAT-Based #SAT-Based AllSAT Algebraic
CO COf COC #FM #FMf #FMc Enum. Comp Diff. Slice

CNF
Horn ✓ ✓ ✓
EPCCL ✓ ✓ ✓
DNF ✓ ✓ ✓ ✓ ✓
DNNF ✓ ✓ ✓ ✓ ✓
d-DNNF ✓ ✓ ✓ ✓ ✓ ✓ ✓
EADT ✓ ✓ ✓ ✓ ✓ ✓ ✓
SDD ✓ ✓ ✓ ✓ ✓ ✓ ✓
PI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IP ✓ ✓ ✓ ✓ ✓ ✓ ✓
ROBDD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MODS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

changes (e.g., adding an optional feature) may be applicable to a knowledge-
compilation artifact in polynomial time, other changed formulas vastly differ
from the original feature model. Hence, we decided to exclude the analyses in
this section.

Succinctness is another often considered dimension for classifying
knowledge-compilation target languages [25]. Informally, succinctness gives an
indication on the expected size of an artifact in a given target language com-
pared to other target languages. In combination with tractability, succinctness
can be used to identify promising target languages for a given use case. The
most succinct target language that is still tractable for the required analyses is
often a promising option. Formally, a target language A is at least as succinct
as another language B (i.e., A ≤ B) if and only if for every artifact in A there
is a semantically equivalent artifact in B that is not exponentially larger than
the original [25]. A is strictly more succinct than B iff A ≤ B but B ≰ A.

Figure 3 shows the succinctness relations between the identified target lan-
guages. The figure is adapted from Darwiche and Marquis [25] and is extended
by some additional languages, namely EPCCL, EADT, and SDD. An arrow
A → B indicates that A is strictly more succinct than B. For instance, d-
DNNF is strictly more succinct than SDD [89]. Note that the figure is not
complete as some succinctness relations are currently unknown [25]. The refer-
ences between the lines specify the publications that indicate the succinctness
relation. The green symbols indicate which analyses are tractable for the dif-
ferent formats. In Figure 3, a promising target language can be identified by
the following characterization: the language supports all required queries, but
its predecessors do not support (all of) them. Note that while succinctness is
often a reasonable indicator, performance in practice may still vary. Hence,
we also empirically evaluate publicly available compilers for different target
languages in Section 6.

Springer Nature 2021 LATEX template

22 On the Benefits of Knowledge Compilation for Feature-Model Analyses

NNF

DNNF
✓ ∆

d-DNNF
✓ #

SDD
✓ #

BDD
✓ # ∪∆

DNF
✓

IP
✓ #

CNF

EPCCL
✓

PI
✓ #

EADT
✓ #

MODS
✓ # ∪∆

[?]

[?] [?]

[?]

[?]

[?] [?]

[?]

[?]

[?]

[?]

[?]

[?]

[?]

[?]

Tractable Analyses
SAT: ✓
#SAT: #
AllSat:
Composition: ∪
Difference: ∆
Slice:

Fig. 3 Succinctness of Languages [Any suggestions to improve this?]

Horn Formula

A Horn formula is a CNF with an additional restriction, namely that each
clause in a Horn formula contains at most one positive literal [80]. For instance,
Equation 1 is a Horn formula, as each of the three clauses contains either
one or no positive literal. Checking the satisfiability of a Horn formula has
linear time complexity with respect to the literals in the formula [80]. However,
Horn formulas are not complete (i.e., they cannot represent every propositional
formula) [25]. As feature models typically require the full expressiveness of
propositional logic [41], Horn formulas are not applicable for all feature models.

(A ∨ ¬B ∨ ¬C) ∧ (¬B ∨ ¬D) ∧ (C ∨ ¬E) (1)

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 23

∧ Decomposable

∧ Decomposable

A B

∨

C ¬D
Fig. 4 Example Formula in DNNF

Each Pair Contains Complementary Literal

Each Pair Contains Complementary Literal (EPCCL) corresponds to a
specialization of CNF where each pair of clauses contains complementary lit-
erals [81]. For a literal A, the literal ¬A is complementary. Equation 2 shows
an example formula in EPCCL. Each pair of clauses contains complementary
literals: {A,¬A}, {B,¬B}, and {¬A,A}, respectively. EPCCL supports poly-
nomial time queries for consistency of features models, features, and partial
configurations [81].

(A ∨B ∨ C) ∧ (¬A ∨B ∨ C) ∧ (A ∨ ¬B ∨ C) (2)

Disjunctive Normal Form

A disjunctive normal form (DNF) is a disjunction of conjunctions where each of
the conjunctions only consists of literals f or ¬f [82]. For instance, Equation 3
is in DNF. A DNF allows polytime queries for analyses based on consistency
checking, model enumeration, and slicing [25].

(A ∧ ¬B) ∨ (B ∧ C) ∨ (A ∧ C ∧D) (3)

Decomposable Negation Normal Form

A decomposable negation normal form (DNNF) is a specialization of an NNF in
which each conjunction is decomposable [25]. A conjunction is decomposable if
and only if the conjuncts share no common variables. Figure 4 shows a directed
acyclic graph representing the DNNF (A ∧B) ∧ (C ∨ ¬C). Both conjunctions
are decomposable as they share no variables (i.e., {A}∩{B} = ∅ and {A,B}∩
{C} = ∅). Consistency checking, model enumeration, and slicing are tractable
for DNNFs [25].

Deterministic Decomposable Negation Normal Form

A deterministic decomposable negation normal form (d-DNNF) is a special-
ized NNF in which each disjunction is deterministic and every conjunction is
decomposable [24, 25]. A disjunction is deterministic if and only if the disjuncts

Springer Nature 2021 LATEX template

24 On the Benefits of Knowledge Compilation for Feature-Model Analyses

∧ Decomposable

∨ Determnistic

A ¬A

∨ Deterministic

B ¬B
Fig. 5 Example Formula in d-DNNF

share no common solutions. Figure 5 shows a simple d-DNNF representing the
formula (A ∨ ¬A) ∧ (B ∨ ¬B) as a directed acyclic graph. The children of the
conjunction (∧) share no variables (i.e., it is decomposable) and the children
of each disjunction (∨) share no solutions (i.e. they are deterministic). The
combination of determinism and decomposability enables tractable queries for
consistency checking, model counting, and enumeration [25].

Decision-DNNF, which is a subset of d-DNNF, are often applied [86, 87, 99].
Hereby, each disjunction is a decision node on a variable a with the structure
(ϕ ∧ a) ∨ (τ ∧ ¬a) where ϕ and τ are subformulas that also conform to the
properties of decision-DNNF. Due to its structure, each decision node is a
deterministic disjunction by definition. Thus, all queries tractable for d-DNNF
are tractable for decision-DNNF.

Smoothness is also often considered for d-DNNFs and decision-DNNFs [24,
25, 87]. A disjunction is smooth if all disjuncts of a disjunction share the same
set of variables. While smoothness simplifies some queries, adding it does not
enable more tractable queries for d-DNNF or decision-DNNF.

Extended Affine Decision Tree

An affine clause is a XOR (i.e., ⊕) over a set of literals. An extended affine deci-
sion tree (EADT) is a finite tree where each external node is a truth value (i.e.,
⊤ or ⊥) and the internal nodes are either affine decision nodes, affine decom-
posable conjunction, or affine decomposable disjunctions [88]. Affine decision
nodes consists of an affine clause and two children corresponding to satisfying
and not satisfying the affine clause, respectively. Alternatively, an affine deci-
sion node follows the structure: ((a1⊕ . . .⊕an)∧Ψl)∨(¬(a1⊕ . . .⊕an)∧Ψr). A
conjunction is affine decomposable if and only if each of its conjuncts share no
variables. Analogously, a disjunction is affine decomposable if and only if each
of its disjuncts share no variables. Figure 6 shows an example EADT repre-
senting the formula A∨B∨C. The dashed edges indicate that its root term is
unsatisfied while the solid line indicates that the root term is satisfied. Consis-
tency checking, computing cardinalities, and model enumeration are tractable
for EADTs.

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 25

A ∨B ∨ C

A⊕B ⊕ C

A⊕B ⊤

B ⊕ C ⊤

⊥ ⊤
Fig. 6 Example Formula in EADT

Sentential Decision Diagram

Sentential decision diagram (SDD) is a generalization of BDD [35, 89]. Instead
of having binary decision nodes on one variable (as in BDDs), decision nodes
in SDDs may have arbitrarily many children on different disjunct sentential
forms. More formally, an SDD is an (X,Y)-partition meaning the original
formula is decomposed in the structure (p1(X1) ∧ s1(Y1) ∨ . . . ∨ (pn(Xn) ∧
sn(Yn))) conforming additional properties. Hereby, Xi ⊆ X and Yi ⊆ Y are
variable sets with X ∩ Y = ∅ and pi (called primes) and si (called subs)
are boolean functions over Xi and si, respectively. Such a decomposition is
considered to be a (X,Y)-partition iff the primes are deterministic (i.e., share
no solutions), exhaustive (i.e., p1 ∨ . . . ∨ pn = ⊤), and satisfiable on their own
(i.e., ∀i : SAT(pi) = ⊤). Figure 7 shows an example SDD representing the
formula (A ∧ B) ∨ (B ∧ C). The (X,Y)-partition decomposes the formula in
X = {A,B} and Y = {C}. The leaves show the sub formulas separated in
prime | sub. SDDs enable polytime queries for consistency checking, cardinality
computations, and model enumeration.

(A ∧B) ∨ (B ∧ C)

∨

A ∧B | ⊤ ¬A ∧B | C ¬B | ⊥
Fig. 7 Example Formula SDD

Prime Implicant

A term i (i.e., conjunction of literals) is an implicant of a formula F if and
only if satisfying the term always satisfies F (i.e., i ⊢ F). An implicant is
prime if it cannot be further reduced (i.e., by removing literals) without losing
the implicant property. The knowledge-compilation target language PI corre-
sponds to a specialization of DNF where each term is a prime implicant [25].
A disjunction over all prime implicants (PI) of a formula F is also called the

Springer Nature 2021 LATEX template

26 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Blake canonical form of F . Figure 8 shows the prime implicants and PI rep-
resentation for the formula (A ∨ B) ∧ (B ∨ C). Consistency, equivalence, and
model enumeration is tractable for prime implicants [25].

(A ∨B) ∧ (B ∨ C)
{ (B),

(A ∧ C)} B ∨ (A ∧ C)
Prime Implicants Blake (PI)

Fig. 8 Prime Implicants for Example Formula

Prime Implicate

Prime implicates are the dual problem to prime implicants: A clause i (i.e.,
disjunction of literals) is an implicate of formula F if and only if satisfying
the formula always satisfies i. An implicate is prime if it cannot be further
reduced without losing the implicate property. The knowledge compilation tar-
get language IP corresponds to a specialization of CNF where each clause is a
prime implicate [25]. Figure 9 shows the prime implicates and IP representa-
tion for the formula (A ∨ B) ∧ (B ∨ C). Consistency, equivalence, and model
enumeration is tractable for prime implicates [25].

(A ∨B) ∧ (B ∨ C)
{(A ∨B)
(B ∨ C)}

(A ∨B)∧
(B ∨ C)

Prime Implicates IP

Fig. 9 Prime Implicates for Example Formula

Binary Decision Diagram

Binary Decision Diagrams (BDD) represent Boolean formulas as directed
acyclic graphs with two terminal nodes 0 and 1 . Every inner node in a
BDD is associated to a variable of the formula and has precisely two outgo-
ing edges (called high and low edge), denoting the assignment of true or false
to this variable, respectively. Typically, one assumed BDDs to be ordered and
reduced [92]. A BDD is ordered, when the sequence of variables on every path
from the root node to the terminal nodes is the same. BDDs are reduced,
when they neither contain a node with its outgoing edges incident with the
same node (i.e., the assignment of the associated variable has no consequences
on the outcome) nor two nodes associated to the same variable that have the
same nodes incident to their high and low edges [92]. Figure 10 shows a BDD
representing the formula (A ∧B) ∨ (B ∧ C).

A plethora of feature-model analyses can be tractably performed on BDDs,
namely consistency checking, cardinality computations, model enumerations,
and some algebraic operations (i.e. diffing and composition). While forgetting
variables is not tractable [25], existential quantification is tractable and could
potentially be applied for slicing [92, 98].

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 27

(A ∧B) ∨ (B ∧ C)

B

A

C

10

Fig. 10 Example Formula BDD

Models

The class of formulas MODS (short for models) is the subset of formulas
in DNF that satisfy determinism and smoothness (i.e. a kind of smooth d-
DDNF) [25]. In essence, MODS enumerates all satisfying assignments, as each
disjunct describes one satisfying assignment. Equation 4 shows a propositional
formula conforming to the restrictions of MODS. The formula is in DNF, the
disjuncts share no solutions (deterministic), and contain the same variables
(smooth). Each considered feature-model analysis is tractable given a MODS
formula [25].

(A ∧B ∧ C) ∨ (A ∧ ¬B ∧ C) ∨ (¬A ∧B ∧ C) (4)

6 Evaluating Compiler Scalability
In addition to tractable queries, an important aspect for the applicability of
knowledge compilation is the scalability of compiling to target languages. In
our empirical evaluation, we examine the runtimes of publicly available knowl-
edge compilers on compiling industrial feature models. The framework and
input data used for the empirical evaluation is publicly available.1

6.1 Research Questions
RQ1 How do knowledge compilers for different target languages perform on

the task of compiling industrial feature models?
The benefits of knowledge compilation (i.e., fast online queries), are only

applicable for feature-model analysis if the compilers scale to industrial
feature models. To examine the applicability, we first inspect the general
scalability regarding compilation time for different knowledge-compilation
target languages. Second, we compare publicly available compilers to give
recommendations on the best-performing tools for each target language.

1https://github.com/SoftVarE-Group/kc-for-fmanalysis-evaluation/

https://github.com/SoftVarE-Group/kc-for-fmanalysis-evaluation/

Springer Nature 2021 LATEX template

28 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Table 10 Subject Systems

Domain Models Features Clauses Cardinality

Operating System 37 94–62,482 190–343,944 1010–10417†

Other Software∗ 13 11-31,012 1–102,705 103–105†

Automotive 2 384–18,616 1,020–350,221 104–101534
Financial Services 1 771 7,241 1013

∗ Including archivers (2), database (2), video (2), network (1), garbage collection (1), image (1),
compiler (1), solving (1), web development (1), and team management (1)

† Cardinalities are incomplete due to every solver hitting timeouts for some models

RQ2 Which knowledge-compilation target languages should be used for the
different types of feature-model analyses?

Typically, there is a tradeoff between tractability of queries and the
complexity of compiling for selecting target languages. For each considered
feature-model analysis, we aim to identify the most scalable target language
that still allows polynomial queries for the respective analyses.

6.2 Subject Systems
The applicability of a knowledge-compilation artifact is highly dependent on
whether real-world instances can be compiled within a reasonable amount of
time. Thus, we consider industrial feature models from a variety of domains
that have been considered in other empirical evaluations.

Table 10 provides an overview of the considered systems sorted into appli-
cation domains. First, we consider 39 feature models from the software systems
and application domain provided by Oh et al. [16]. Second, we include three
CDL2, eight KConfig3, and one automotive feature model published by Knüp-
pel et al. [41]. Third, our dataset contains a BusyBox4 feature model, which
was extracted by Pett et al. [100]. Fourth, we consider a feature model from the
financial service domain [101, 102]. Fifth, two additional models are available
as FeatureIDE [19] examples.

6.3 Knowledge Compilers
We include every found knowledge compiler that takes CNF (dimacs) as
input and compiles to one of the knowledge-compilation target languages we
identified. When collecting compilers, we identified seven compilers from the
literature survey and seven compilers with the GitHub search resulting in
overall ten knowledge-compilers.

Table 11 gives an overview of the identified knowledge compilers indicat-
ing the corresponding target language, the corresponding work, and a link
to source files or binary. For each of d-DNNF, SDD, and BDD, our evalua-
tion includes three compilers. We evaluate the BDD libraries BuDDy and Cudd
by using the dduerum wrapper, we provided in previous work [21]. Further,

2http://ecos.sourceware.org/ecos/docs-latest/cdl-guide/language.html
3https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
4https://github.com/PettTo/Measuring-Stability-of-Configuration-Sampling

http://ecos.sourceware.org/ecos/docs-latest/cdl-guide/language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://github.com/PettTo/Measuring-Stability-of-Configuration-Sampling

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 29

we found one EADT compiler. We were not able to find compilers for other
formats that accept CNF as input.

Table 11 Evaluated Knowledge Compilers

Name Artifact Reference Link

c2d d-DNNF [24] 5

dSharp d-DNNF [87] 6

d4 d-DNNF [86] 7

MiniC2D SDD [103] 8

SDD SDD [35] 9

ZSDD ZSDD [90] 10

Cudd BDD [104] 11

BuDDy BDD [105] 12

CNF2OBDD BDD [106] 13

CNF2EADT EADT [88] 14

6.4 Experiment Design
We invoke each listed knowledge compiler on every considered feature model.
Thereby, we provide each feature model as CNF in dimacs format and perform
ten repetitions. If a feature model was not already given as CNF, we translated
it to dimacs using FeatureIDE v3.8.3, which uses a translation based on equiv-
alence transformations [14]. We set a timeout of 10 minutes for each knowledge
compiler, as feature models are typically analyzed either interactively or in a
CI/CD environment [19, 51, 107]. In both cases, runtimes longer than a few
minutes typically disrupt the working flow. Further, increasing the timeout in
preliminary experiments had no substantial impact on the results. We use the
default parameters of every considered tool. For each measurement, we per-
form ten repetitions and collect the resulting knowledge-compilation artifact
and runtime for further analysis.

Technical Setup
The empirical evaluation was run on a designated server with the following
specifications:

• Operating System: Ubuntu 20.04.4 LTS

5http://reasoning.cs.ucla.edu/c2d/
6https://github.com/QuMuLab/dsharp
7https://github.com/crillab/d4
8http://reasoning.cs.ucla.edu/minic2d/
9http://reasoning.cs.ucla.edu/sdd/
10https://github.com/nsnmsak/zsdd
11https://github.com/vscosta/cudd
12http://buddy.sourceforge.net/manual/main.html
13http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
14http://www.cril.univ-artois.fr/KC/eadt.html

http://reasoning.cs.ucla.edu/c2d/
https://github.com/QuMuLab/dsharp
https://github.com/crillab/d4
http://reasoning.cs.ucla.edu/minic2d/
http://reasoning.cs.ucla.edu/sdd/
https://github.com/nsnmsak/zsdd
https://github.com/vscosta/cudd
http://buddy.sourceforge.net/manual/main.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://www.cril.univ-artois.fr/KC/eadt.html

Springer Nature 2021 LATEX template

30 On the Benefits of Knowledge Compilation for Feature-Model Analyses

0 10 20 30 40 50

10−3

10−2

10−1

100

101

102

103

Subject System (Sorted by Number of Features)

R
un

ti
m

e
in

Se
co

nd
s

(l
og

)

c2d d4 dSharp BuDDy Cudd
CNF2OBDD MiniC2D SDD ZSDD CNF2EADT
Timeout Error

Fig. 11 Runtime Knowledge Compilers (Average & Standard Deviation)

• CPU: Intel(R) Xeon(R) CPU E5-260v3 with 2.40Ghz
• Overall RAM: 256 GB
During the measurements, no other major processes were performed on the

machine. For each tool, we set the memory limit to 8 GB as we consider this a
reasonable limit to expect for notebooks and PCs used in practice. Further, in
preliminary experiments, we identified no substantial differences in measured
runtimes when increasing the memory limit beyond 8 GB. For our empirical
evaluation, we used a Python framework which internally uses the module
timeit to measure runtimes.15

6.5 Results
Figure 11 shows the runtimes of all considered knowledge compilers on the 53
feature models. Each point on the x-axis corresponds to one feature model,
which are sorted ascendingly by their number of features. The y-axis shows the
runtime in seconds with a logarithmic scale. A mark on the red line indicates
that the compiler hit the timeout for the respective feature model. The violet
line indicates that a compiler terminated unexpectedly due to an error or
hitting the memory limit.

15https://docs.python.org/3/library/timeit.html

https://docs.python.org/3/library/timeit.html

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 31

Considering the different types of knowledge compilers, at least one of the
d-DNNF compilers (c2d, dSharp, and d4) was able to compile 47 out of the 53
feature models. For the remaining six feature models, namely all (four) variants
of Linux, buildroot, and freetz, all compilers for every target language hit the
timeout or memory limit. At least one of the three SDD compilers, namely
MiniC2D, SDD, and ZSDD, successfully compiled 46 feature models, failing to
the same feature models as d-DNNFs and one additional feature model. The
only EADT compiler CNF2EADT successfully compiled 25 feature models. The
fastest BDD compiler Cudd was able to compile 18 feature models within the
given timeout and memory limit.

Table 12 Overall Runtime Knowledge Compilers

Compiler Successes (of 53) Runtime (Sum over Successes)

d4 47 4.38 Min.
dSharp 47 21.8 Min.
c2d 44 14.3 Min.

MiniC2D 46 19.7 Min.
SDD 29 29.5 Min.
ZSDD 13 14.1 Min.

CNF2OBDD 16 19.7 Min.
Cudd 18 23.1 Min.
BuDDy 15 4.62 Min

CNF2EADT 25 4.54 Min.

Table 12 shows the number of successfully evaluated feature models and
sum of runtimes for every evaluated knowledge compiler. The sum of runtimes
corresponds to the runtimes over the feature models successfully evaluated by
this compiler. The overall fastest d-DNNF compiler d4 requires in sum 4.38
minutes for the 47 successfully evaluated feature models. For SDDs, the fastest
compiler MiniC2D requires 19.7 minutes for the 46 feature models. CNF2EADT
requires 4.54 minutes for the 25 feature models it successfully evaluated. Cudd
successfully evaluated 16 of the feature models in overall 19.7 minutes.

6.6 Discussion
RQ1: How do knowledge compilers for different target languages perform on
the task of compiling industrial feature models?
The majority of evaluated feature models can be compiled to at least one of
the knowledge-compilation target languages. Still, 6 out of 53 feature models
could not be compiled to any target language within the given timeout of ten
minutes. Preliminary measurements outside of the experiment design indicated
that even substantially increasing the timeout (e.g., to one hour) leads to very
similar results.

Springer Nature 2021 LATEX template

32 On the Benefits of Knowledge Compilation for Feature-Model Analyses

Compiling to d-DNNF and SDD is applicable for many industrial feature
models (88.7% and 86.8%, respectively). Compiling to BDD or EADT is only
applicable (w.r.t. the runtime) for less complex feature models. The compilers
for BDD or EADT only scaled to feature models for which compiling to d-
DNNF requires less than a second.

The fastest compilers we identified for each target language are d4 (d-
DNNF), MiniC2D (SDD), CNF2EADT (EADT, only one), and Cudd (BDD). For
each target language, neither compiler is faster than all other compilers of
that target language on all considered feature models. Thus, even though the
compilers listed above seem a promising choice for as compiler, it may still be
beneficial to use different compilers depending on the input feature model.

Overall, our results indicate that knowledge compilation may be beneficial
for feature-model analysis. The majority of feature models can be compiled
within seconds to a target language that enables various tractable queries. To
inspect the actual benefits, evaluating the performance of queries and compar-
ing them with the current state of the art for feature-model analysis is essential
as future work.
RQ2: Which knowledge-compilation target languages should be used for the
different types of feature-model analyses?

Based solely on the compilation time, d-DNNFs are the most promis-
ing target language for SAT-, #SAT-, and AllSAT-based analyses. SDDs are
competitive with d-DNNFs for many feature models and, thus, are also a con-
siderable option. The benefits of target languages also depend on the runtime
required for queries and, thus, longer compilation times (e.g., to SDD) could
potentially be amortized if the queries are faster. However, compilers for the
other considered target languages (i.e., BDD and EADT) fail to compute a
target artifact for the majority of feature models within the given timeout.

Employing SDDs might also be valuable in the future as more queries are
tractable for SDD than for d-DNNF. In particular, equivalence and senten-
tial entailment can be checked in polynomial time with SDDs but not with
d-DNNFs [89]. SDDs are also tractable for additional transformations com-
pared to d-DNNFs, such as negation and bounded conjunction/disjunction [89].
While the same set of the feature-model analyses we collected are tractable
for d-DNNF and SDD, future analyses or alternative ways to solve existing
analyses may capitalize on the additional tractability of SDD.

Compiling to BDD may also be beneficial due to additional tractable
queries. In particular, feature-model analyses dependent on algebraic oper-
ations, namely feature-model diffing and feature-model composition, are
tractable for BDDs but not for EADT, d-DNNF, nor SDD.

It is important to note that due to availability of compilers, our empir-
ical evaluation only covers four out of the ten identified target languages.
While some target languages are not complete (i.e., cannot represent every
propositional formula) and, thus, not necessarily suitable for feature-model

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 33

analysis, some of the six remaining target languages may be beneficial. Devel-
oping compilers for promising (w.r.t. tractable queries) target languages may
be beneficial future work for feature-model analysis.

6.7 Threats to Validity
In this section, we discuss possible limitations to the results of our empirical
evaluation and measures we have taken to reduce their impact.

Random Effects and Computational Bias
Single measurements for the same combination of feature model and compiler
may vary due to random effects and computational bias. For instance, compi-
lation with c2d partially uses randomness to create the initial vtree which the
d-DNNF is built upon [99]. To reduce the impact of such effects, we performed
ten repetitions for each measurement.

Compiler Parameters
Several considered compilers provide parameters (e.g., heuristics for select-
ing the branching variables) that potentially influence the compiler’s runtime.
Changing parameters may influence the performed measurements [108] and
may even influence some conclusions. For such parameters, we always used the
defaults as tweaking parameters would require further expertise. Hence, we
expect default parameters to better reflect the usage of compilers for feature-
model analysis in practice. Also, we consider parametrization of all compilers
to be out of scope for this work. Still, we consider parameterizing the compilers
as vital future work. A possible approach is to apply existing optimizers that
more generically target parameter optimization for computationally complex
problems [108, 109].

Formula Translations
The translation from feature model to formula is not necessarily unique; for
example, there are alternative encodings for expressing alternatives [40]. Also,
the selection of a CNF translation, such as Tseitin’s transformation [110]
or equivalence transformations, may influence the performance of considered
tools [14]. Integrating more feature-model or CNF translations for every fea-
ture model would vastly increase the complexity of the empirical evaluation.
Thus, we consider different translations as out of scope for this work but as
relevant in the future.

Further, some CNF translations do not ensure equivalence of formulas but
less restrictive properties, such as equisatisfiability. For such an equisatisfi-
able formula, other analyses such as #SAT may product incorrect results [14].
Such a transformation may also result in faulty knowledge compilation arti-
facts. However, for each feature model not already given as CNF, we used the
FeatureIDE transformation, which ensures equivalence.

Springer Nature 2021 LATEX template

34 On the Benefits of Knowledge Compilation for Feature-Model Analyses

External Validity: Feature Models
Our empirical results cannot necessarily be transferred to other industrial fea-
ture models. However, we covered a wide range of feature models with regard
to number of features (11–62,482), number of clauses (1–350,221), domains,
and scalability of solvers and compilers (milliseconds vs. timeout for every
compiler) [7].

External Validity: Compilers
It is possible that we missed some available knowledge compilers that would
influence the results and implications of our empirical evaluation. In particular,
we only found compilers for four out of the eleven considered knowledge-
compilation target languages. To effectively find available compilers, we
systematically considered a large variety of research on knowledge compila-
tion. We surveyed 1,050 papers including the term knowledge compilation and
extracted various target languages and compilers. Afterwards, we extended
the list of compilers further by performing a GitHub search for each identi-
fied target language. A possible explanation for missing compilers targeting
specific languages may be their tractability, completeness, and succinctness.
We could not identify compiler for the four least tractable languages (consid-
ering feature-model analyses), namely Horn [80], EPCCL [81], DNF [82], and
DNNF [84]. Horn is also incomplete (i.e., cannot represent all propositional
formulas) which may be another reason for the missing compiler. We also did
not find a compiler for MODS which is the least succinct target language.

7 Related Work
In this section, we discuss related work that (1) considers knowledge compi-
lation in the feature-model domain and (2) surveys feature-model analyses.
Further, we put our work into context of current research.

Knowledge Compilation on Feature Models

Binary decision diagrams have been considered for various feature-model anal-
yses. Mendonca et al. [33] present several strategies for variable orderings based
on the given feature model. Heradio et al. [32] use BDDs to compute core, dead,
conditionally core, and conditionally dead features. In previous work [21], we
analyzed the scalability of popular BDD libraries for compiling feature mod-
els. Our selection of BDD libraries in this work is based on the insights of the
previous work [21]. Pohl et al. [34] compares the performance of several solving
techniques, namely SAT solvers, BDDs, and CSP solvers for different feature-
model analyses. Each of the listed publications considers only BDDs as target
language and does not compare the scalability and capabilities (in terms of
tractable queries) of BDDs to other target languages.

Sharma et al. [22] and Baital et al. [36] employ knowledge compilation to
d-DNNF for uniform random sampling and t-wise sampling, respectively. How-
ever, their work is each limited to a single feature-model analysis and target

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 35

language while we consider a large variety of target languages and analyses.
Bourhis et al. [111] perform several analyses on feature models using d-DNNFs.
However, they do not consider any other target language. In previous publica-
tions, Kübler et al. [9] and we [7] used d-DNNF compilers as black-box #SAT
solvers. In both publications, the knowledge-compilation artifact is not reused
and, thus, the advantages of knowledge compilation are not used nor con-
sidered. Within another previous work [112], we employ d-DNNFs for model
counting but consider no other analyses or target languages.

Voronov et al. [113] compare d-DNNFs (c2d) and BDDs (BuDDy) for enu-
merating valid configurations. Similar to our results, their empirical evaluation
indicates that compiling to d-DNNF is substantially faster than compiling to
BDD. In contrast to our work, the authors consider only one type of query
(i.e., enumeration) and only two target languages. In previous work [114],
we evaluate several model counters (or #SAT solvers) including some knowl-
edge compilers capable of counting. Thereby, we exclude target languages
intractable of counting and measure the runtimes required for counting instead
of only compilation.

Krieter et al. [51] employ modal implication graphs to accelerate decision
propagation (cf. Section 4.1). A modal implication graph encodes an underly-
ing CNF as a directed graph indicating dependencies between features. Hereby,
a binary clause A ∨ B is represented by two strong edges (i.e., ¬A ⇒ B
and ¬B ⇒ A) between the corresponding literals indicating the implications.
Clauses with more than two literals (e.g. A ∨B ∨C) are represented by weak
edges that indicate a possible implication (e.g., ¬A ⇒ B ∨ C). While modal
implications graphs reduce the number of required SAT calls and, thus, accel-
erate decision propagation in practice, none of the considered feature-model
analysis is tractable for them. Krieter et al. [51] also consider an extension
of modal implications graphs indicating all core and dead features. With this
extension, feature model consistency and feature consistency are tractable for
modal implication graphs. However, the set of core and dead features alone
makes both analyses tractable and, thus, we do not consider pure modal
implications graphs as a knowledge-compilation target language.

Surveys on Feature-Model Analyses

Benavides et al. [2] gathered various feature-model analyses depending on dif-
ferent computational problems (e.g., SAT, #SAT, or AllSAT). While giving
general ideas on how to compute results for some specified analyses, the authors
do not provide an assessment on the computational complexity regarding the
number of queries. Further, we provide 25 additional analyses.

Galindo et al. [115] conduct a systematic literature survey focusing on
publications dealing with automated analysis of feature models. However, they
do not focus on concrete analyses but rather on publication metrics, such as
popularity of venues and background of authors.

In previous work [26], we presented several analyses dependent on feature-
model counting, fully subsuming the list of analyses of previous surveys on

Springer Nature 2021 LATEX template

36 On the Benefits of Knowledge Compilation for Feature-Model Analyses

feature-model counting [9, 50]. There, we categorized each analysis by the
type of computation, namely cardinality of feature model, features, and partial
configurations. In contrast to this previous work, we now analyze the number
of required queries and extend the list of analyses with analyses which depend
on other computational problems.

In other previous work [1], we classified analysis strategies for product
lines. This classification targets the application domain (e.g., product-based
vs. family-based analysis) in contrast to showcasing underlying computational
problems. Further, with the previous survey [1] we did not elaborate on
concrete analyses but rather on more abstract analysis classes.

Various other surveys on product lines consider feature-model analyses
to some degree [116–120]. While some publications provide rough ideas on
the complexity of respective analyses, neither work systematically analyzes
the complexities. In contrast, we provide a worst-case complexity for every
collected feature-model analysis.

8 Conclusion
In our survey, we show that many feature-model analyses depend on numerous
queries on the exact same feature model. Further, many analyses can be applied
repeatedly for the same feature model, for instance when interactively deriv-
ing configurations. The potentially high number of required queries motivates
the use of knowledge compilation. With knowledge compilation, the original
feature model is translated to a target language that enables faster querying,
potentially amortizing the initial cost of compilation.

Available target languages allow fast queries for different sets of analyses.
Finding a sweet spot between tractable queries and compilation is essential to
get full benefits from employing knowledge compilation. d-DNNFs and SDDs
enable polytime queries for a variety of feature-model analyses and scale to the
majority of considered industrial feature models. Hence, both target languages
seem promising to apply. Other formats, such as BDDs and EADT, require
substantially more time to compile, hitting the timeout for the majority of
feature models. Nevertheless, if a feature-model analysis of interest requires
complex queries such as algebraic computations, BDD and EADT still yield
benefits over d-DNNF and SDD.

9 Future Work
Our results on the applicability of knowledge-compilation target languages
and the scalability of available compilers indicate the potential of knowledge
compilation. However, the benefits in practice also depend on the runtimes
of querying the knowledge-compilation artifact. If the queries are too slow,
the effort to compile the original formula might not amortize. To quantify the
actual benefits, the efficiency of queries should be examined and compared
with state-of-the-art solutions.

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 37

For many knowledge-compilation target languages we collected, we were
not able to find any publicly available compilers. As each of the considered
target languages enables some queries relevant for feature-model analysis,
developing compilers may be beneficial.

Feature-model specific optimizations may improve the runtimes of knowl-
edge compilers. In our work, we used the compilers as black boxes without any
parameterization. Identifying and eventually automatically selecting param-
eters may increase the performance and, thus, could be valuable for future
work.

Declarations
Conflict of Interests
The authors have no conflicts of interest to declare that are relevant to the
content of this article.

Data Availability
The datasets generated during and/or analyzed during the current study are
available in the replication repository, https://github.com/SoftVarE-Group/
kc-for-fmanalysis-evaluation/.

References
[1] Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A Classifica-

tion and Survey of Analysis Strategies for Software Product Lines. ACM
Computing Surveys (CSUR) 47(1), 6–1645 (2014)

[2] Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Fea-
ture Models 20 Years Later: A Literature Review. Information Systems
35(6), 615–708 (2010)

[3] Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, (2005)

[4] Berger, T., Nair, D., Rublack, R., Atlee, J.M., Czarnecki, K., Wąsowski,
A.: Three Cases of Feature-Based Variability Modeling in Industry. In:
Proc. Int’l Conf. on Model Driven Engineering Languages and Systems
(MODELS), pp. 302–319. Springer, (2014)

[5] McGregor, J.: Testing a Software Product Line. In: Testing Techniques
in Software Engineering, pp. 104–140. Springer, (2010)

[6] Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software
Product Lines. Springer, (2013)

https://github.com/SoftVarE-Group/kc-for-fmanalysis-evaluation/
https://github.com/SoftVarE-Group/kc-for-fmanalysis-evaluation/

Springer Nature 2021 LATEX template

38 On the Benefits of Knowledge Compilation for Feature-Model Analyses

[7] Sundermann, C., Thüm, T., Schaefer, I.: Evaluating #SAT Solvers on
Industrial Feature Models. In: Proc. Int’l Working Conf. on Variability
Modelling of Software-Intensive Systems (VaMoS). ACM, (2020)

[8] Lotufo, R., She, S., Berger, T., Czarnecki, K., Wąsowski, A.: Evolution of
the Linux Kernel Variability Model. In: Proc. Int’l Systems and Software
Product Line Conf. (SPLC), pp. 136–150. Springer, (2010)

[9] Kübler, A., Zengler, C., Küchlin, W.: Model Counting in Product Config-
uration. In: Proc. Int’l Workshop on Logics for Component Configuration
(LoCoCo), pp. 44–53. Open Publishing Association, (2010)

[10] Sprey, J., Sundermann, C., Krieter, S., Nieke, M., Mauro, J., Thüm,
T., Schaefer, I.: SMT-Based Variability Analyses in FeatureIDE. In:
Proc. Int’l Working Conf. on Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, (2020)

[11] Mendonça, M., Wąsowski, A., Czarnecki, K.: SAT-Based Analysis of
Feature Models is Easy. In: Proc. Int’l Systems and Software Product
Line Conf. (SPLC), pp. 231–240. Software Engineering Institute, (2009)

[12] Batory, D.: Feature Models, Grammars, and Propositional Formulas. In:
Proc. Int’l Systems and Software Product Line Conf. (SPLC), pp. 7–20.
Springer, (2005)

[13] Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Using Constraint Program-
ming to Reason on Feature Models. In: Proc. Int’l Conf. on Software
Engineering and Knowledge Engineering (SEKE), pp. 677–682 (2005)

[14] Kuiter, E., Krieter, S., Sundermann, C., Thüm, T., Saake, G.: Tseitin
or not Tseitin? The Impact of CNF Transformations on Feature-Model
Analyses. In: Proc. Int’l Conf. on Automated Software Engineering
(ASE), pp. 110–111013. ACM, (2022)

[15] Oh, J., Gazzillo, P., Batory, D.: t-wise Coverage by Uniform Sampling.
In: Proc. Int’l Systems and Software Product Line Conf. (SPLC), pp.
84–87. ACM, (2019)

[16] Oh, J., Gazzillo, P., Batory, D., Heule, M., Myers, M.: Uniform Sam-
pling from Kconfig Feature Models. Technical Report TR-19-02, The
University of Texas at Austin, Department of Computer Science (2019)

[17] Knüppel, A., Thüm, T., Mennicke, S., Meinicke, J., Schaefer, I.: Is
There a Mismatch between Real-World Feature Models and Product-
Line Research? In: Tichy, M., Bodden, E., Kuhrmann, M., Wagner,
S., Steghöfer, J. (eds.) Proc. Software Engineering (SE), pp. 53–54.
Gesellschaft für Informatik, (2018)

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 39

[18] Valiant, L.G.: The Complexity of Enumeration and Reliability Problems.
SIAM J. on Computing 8(3), 410–421 (1979)

[19] Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., Saake, G.:
Mastering Software Variability with FeatureIDE. Springer, (2017)

[20] Hentze, M., Pett, T., Thüm, T., Schaefer, I.: Hyper Explanations
for Feature-Model Defect Analysis. In: Proc. Int’l Working Conf. on
Variability Modelling of Software-Intensive Systems (VaMoS). ACM,
(2021)

[21] Heß, T., Sundermann, C., Thüm, T.: On the Scalability of Building
Binary Decision Diagrams for Current Feature Models. In: Proc. Int’l
Systems and Software Product Line Conf. (SPLC), pp. 131–135. ACM,
(2021)

[22] Sharma, S., Gupta, R., Roy, S., Meel, K.S.: Knowledge Compilation
Meets Uniform Sampling. In: Proc. Int’l Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning, pp. 620–636. EasyChair, (2018)

[23] Drechsler, R., Becker, B.: Binary Decision Diagrams: Theory and
Implementation. Springer, (1998)

[24] Darwiche, A.: A Compiler for Deterministic, Decomposable Negation
Normal Form. In: Proc. Conf. on Artificial Intelligence (AAAI), pp. 627–
634. AAAI Press, (2002)

[25] Darwiche, A., Marquis, P.: A Knowledge Compilation Map. J. Artificial
Intelligence Research (JAIR) 17(1), 229–264 (2002)

[26] Sundermann, C., Nieke, M., Bittner, P.M., Heß, T., Thüm, T., Schae-
fer, I.: Applications of #SAT Solvers on Feature Models. In: Proc. Int’l
Working Conf. on Variability Modelling of Software-Intensive Systems
(VaMoS). ACM, (2021)

[27] Krieter, S., Thüm, T., Schulze, S., Saake, G., Leich, T.: YASA: Yet
Another Sampling Algorithm. In: Proc. Int’l Working Conf. on Variabil-
ity Modelling of Software-Intensive Systems (VaMoS). ACM, (2020)

[28] Fernández-Amorós, D., Heradio, R., Cerrada, J.A., Cerrada, C.: A Scal-
able Approach to Exact Model and Commonality Counting for Extended
Feature Models. IEEE Trans. on Software Engineering (TSE) 40(9),
895–910 (2014)

[29] Krieter, S., Schröter, R., Thüm, T., Saake, G.: An Efficient Algorithm
for Feature-Model Slicing. Technical Report FIN-001-2016, University of
Magdeburg (2016)

Springer Nature 2021 LATEX template

40 On the Benefits of Knowledge Compilation for Feature-Model Analyses

[30] Segura, S.: Automated Analysis of Feature Models Using Atomic Sets.
In: Proc. Int’l Systems and Software Product Line Conf. (SPLC), vol. 2,
pp. 201–207. IEEE, (2008)

[31] El-Sharkawy, S., Krafczyk, A., Schmid, K.: An Empirical Study of Con-
figuration Mismatches in Linux. In: Proc. Int’l Systems and Software
Product Line Conf. (SPLC), pp. 19–28. ACM, (2017)

[32] Heradio, R., Pérez-Morago, H.J., Fernández-Amorós, D., Bean, R.,
Cabrerizo, F.J., Cerrada, C., Herrera-Viedma, E.: Binary Decision Dia-
gram Algorithms to Perform Hard Analysis Operations on Variability
Models. In: Proc. Int’l Conf. on Intelligent Software Methodologies, Tools
and Techniques (SOMET), pp. 139–154. IOS Press, (2016)

[33] Mendonça, M., Wąsowski, A., Czarnecki, K., Cowan, D.: Efficient Com-
pilation Techniques for Large Scale Feature Models. In: Proc. Int’l Conf.
on Generative Programming and Component Engineering (GPCE), pp.
13–22. ACM, (2008)

[34] Pohl, R., Lauenroth, K., Pohl, K.: A Performance Comparison of
Contemporary Algorithmic Approaches for Automated Analysis Opera-
tions on Feature Models. In: Proc. Int’l Conf. on Automated Software
Engineering (ASE), pp. 313–322. IEEE, (2011)

[35] Darwiche, A.: SDD: A New Canonical Representation of Propositional
Knowledge Bases, pp. 819–826. AAAI Press, (2011)

[36] Baranov, E., Legay, A., Meel, K.S.: Baital: An Adaptive Weighted Sam-
pling Approach for Improved t-Wise Coverage. In: Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE),
pp. 1114–1126. ACM, (2020)

[37] Liang, J.H., Ganesh, V., Czarnecki, K., Raman, V.: SAT-Based Analysis
of Large Real-World Feature Models Is Easy. In: Proc. Int’l Systems and
Software Product Line Conf. (SPLC), pp. 91–100. Springer, (2015)

[38] Czarnecki, K., Wąsowski, A.: Feature Diagrams and Logics: There and
Back Again. In: Proc. Int’l Systems and Software Product Line Conf.
(SPLC), pp. 23–34. IEEE, (2007)

[39] Heradio, R., Fernández-Amorós, D., Mayr-Dorn, C., Egyed, A.: Support-
ing the Statistical Analysis of Variability Models. In: Proc. Int’l Conf.
on Software Engineering (ICSE), pp. 843–853. IEEE, (2019)

[40] Karpiński, M., Piotrów, M.: Encoding Cardinality Constraints Using
Multiway Merge Selection Networks. Constraints 24, 234–251 (2019)

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 41

[41] Knüppel, A., Thüm, T., Mennicke, S., Meinicke, J., Schaefer, I.: Is There
a Mismatch Between Real-World Feature Models and Product-Line
Research? In: Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE), pp. 291–302. ACM, (2017)

[42] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: Proc. Anual Conf. on Design
Automation (DAC), pp. 530–535. ACM, (2001)

[43] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Proc. Int’l Conf.
on Theory and Applications of Satisfiability Testing (SAT), pp. 502–518.
Springer, (2004)

[44] Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: A Scalable Prob-
abilistic Exact Model Counter. In: Proc. Int’l Joint Conf. on Artificial
Intelligence (IJCAI), vol. 19, pp. 1169–1176. AAAI Press, (2019)

[45] Thurley, M.: sharpSAT - Counting Models with Advanced Compo-
nent Caching and Implicit BCP. In: Proc. Int’l Conf. on Theory and
Applications of Satisfiability Testing (SAT), pp. 424–429. Springer,
(2006)

[46] Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: Fast d-dnnf
compilation with sharpsat. In: Kosseim, L., Inkpen, D. (eds.) Advances
in Artificial Intelligence, pp. 356–361. Springer, (2012)

[47] Büning, H.K., Lettmann, T.: Propositional Logic: Deduction and Algo-
rithms vol. 48. Cambridge University Press, (1999)

[48] Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the Satisfi-
ability (SAT) Problem: A Survey. Technical report, Cincinnati University
(1996)

[49] Valiant, L.G.: The Complexity of Computing the Permanent. Theoretical
Computer Science 8(2), 189–201 (1979)

[50] Heradio, R., Fernández-Amorós, D., Cerrada, J.A., Abad, I.: A Liter-
ature Review on Feature Diagram Product Counting and Its Usage in
Software Product Line Economic Models. Int’l J. Software Engineering
and Knowledge Engineering (IJSEKE) 23(08), 1177–1204 (2013)

[51] Krieter, S., Thüm, T., Schulze, S., Schröter, R., Saake, G.: Propagating
Configuration Decisions with Modal Implication Graphs. In: Proc. Int’l
Conf. on Software Engineering (ICSE), pp. 898–909. ACM, (2018)

[52] Oh, J., Gazzillo, P., Batory, D., Heule, M., Myers, M.: Scalable Uni-
form Sampling for Real-World Software Product Lines. Technical Report

Springer Nature 2021 LATEX template

42 On the Benefits of Knowledge Compilation for Feature-Model Analyses

TR-20-01, The University of Texas at Austin, Department of Computer
Science (2020)

[53] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.:
FeatureIDE: An Extensible Framework for Feature-Oriented Software
Development. Science of Computer Programming (SCP) 79(0), 70–85
(2014)

[54] Zhang, W., Zhao, H., Mei, H.: A Propositional Logic-Based Method
for Verification of Feature Models. In: Proc. Int’l Conf. on Formal
Engineering Methods (ICFEM), pp. 115–130. Springer, (2004)

[55] Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Baudry,
B.: Test Them All, Is It Worth It? Assessing Configuration Sampling on
the JHipster Web Development Stack. Empirical Software Engineering
(EMSE) 24(2), 674–717 (2019)

[56] Thüm, T., Batory, D., Kästner, C.: Reasoning About Edits to Feature
Models. In: Proc. Int’l Conf. on Software Engineering (ICSE), pp. 254–
264. IEEE, (2009)

[57] Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for Comput-
ing Backbones of Propositional Formulae. Ai Communications 28(2),
161–177 (2015)

[58] Krieter, S., Thüm, T., Schulze, S., Schröter, R., Saake, G.: Propa-
gating Configuration Decisions with Modal Implication Graphs. In:
Proc. Software Engineering (SE), pp. 77–78. Gesellschaft für Informatik,
(2019)

[59] Al-Hajjaji, M., Krieter, S., Thüm, T., Lochau, M., Saake, G.: IncLing:
Efficient Product-line Testing Using Incremental Pairwise Sampling. In:
Proc. Int’l Conf. on Generative Programming: Concepts & Experiences
(GPCE), pp. 144–155. ACM, (2016)

[60] Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Using Feature Model
Knowledge to Speed Up the Generation of Covering Arrays. In: Proc.
Int’l Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS), pp. 16–1166. ACM, (2013)

[61] Johansen, M.F., Haugen, Ø., Fleurey, F.: Properties of Realistic Fea-
ture Models Make Combinatorial Testing of Product Lines Feasible. In:
Proc. Int’l Conf. on Model Driven Engineering Languages and Systems
(MODELS), pp. 638–652. Springer, (2011)

[62] Johansen, M.F., Haugen, Ø., Fleurey, F.: An Algorithm for Generat-
ing T-Wise Covering Arrays from Large Feature Models. In: Proc. Int’l

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 43

Systems and Software Product Line Conf. (SPLC), pp. 46–55. ACM,
(2012)

[63] Johansen, M.F., Haugen, Ø., Fleurey, F., Eldegard, A.G., Syversen, T.:
Generating Better Partial Covering Arrays by Modeling Weights on
Sub-Product Lines. In: Proc. Int’l Conf. on Model Driven Engineering
Languages and Systems (MODELS), pp. 269–284. Springer, (2012)

[64] Kowal, M., Schulze, S., Schaefer, I.: Towards Efficient SPL Testing
by Variant Reduction. In: Proc. Int’l Workshop on Variability and
Composition (VariComp), pp. 1–6. ACM, (2013)

[65] Oster, S., Markert, F., Ritter, P.: Automated Incremental Pairwise Test-
ing of Software Product Lines. In: Proc. Int’l Systems and Software
Product Line Conf. (SPLC), pp. 196–210. Springer, (2010)

[66] Acher, M., Heymans, P., Collet, P., Quinton, C., Lahire, P., Merle, P.:
Feature Model Differences. In: Proc. Int’l Conf. on Advanced Information
Systems Engineering (CAiSE), pp. 629–645. Springer, (2012)

[67] Czarnecki, K., Kim, C.H.P.: Cardinality-Based Feature Modeling and
Constraints: A Progress Report. In: Proc. Int’l Workshop on Software
Factories (SF), pp. 16–20 (2005)

[68] Bagheri, E., Noia, T.D., Gasevic, D., Ragone, A.: Formalizing Interactive
Staged Feature Model Configuration. J. Software: Evolution and Process
24(4), 375–400 (2012)

[69] Clements, P.C., McGregor, J.D., Cohen, S.G.: The Structured Intu-
itive Model for Product Line Economics (SIMPLE). Technical report,
Carnegie-Mellon University (2005)

[70] Cohen, S.: Predicting When Product Line Investment Pays. Technical
report, Carnegie-Mellon University (2003)

[71] Chen, S., Erwig, M.: Optimizing the Product Derivation Process. In:
Proc. Int’l Systems and Software Product Line Conf. (SPLC), pp. 35–44.
IEEE, (2011)

[72] Mazo, R., Dumitrescu, C., Salinesi, C., Diaz, D.: Recommendation
Heuristics for Improving Product Line Configuration Processes. In: Rec-
ommendation Systems in Software Engineering, pp. 511–537. Springer,
(2014)

[73] Oh, J., Batory, D., Myers, M., Siegmund, N.: Finding Near-Optimal
Configurations in Product Lines by Random Sampling. In: Proc. Int’l
Symposium on Foundations of Software Engineering (FSE), pp. 61–71

Springer Nature 2021 LATEX template

44 On the Benefits of Knowledge Compilation for Feature-Model Analyses

(2017)

[74] Aziz, R.A., Chu, G., Muise, C., Stuckey, P.: #∃ SAT: Projected
Model Counting. In: Proc. Int’l Conf. on Theory and Applications of
Satisfiability Testing (SAT), pp. 121–137. Springer, (2015)

[75] Acher, M., Collet, P., Lahire, P., France, R.B.: Slicing Feature Models.
In: Proc. Int’l Conf. on Automated Software Engineering (ASE), pp.
424–427. IEEE, (2011)

[76] Krieter, S., Schröter, R., Thüm, T., Fenske, W., Saake, G.: Comparing
Algorithms for Efficient Feature-Model Slicing. In: Proc. Int’l Systems
and Software Product Line Conf. (SPLC), pp. 60–64. ACM, (2016)

[77] Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting Treewidth
for Projected Model Counting and Its Limits. In: Proc. Int’l Conf. on
Theory and Applications of Satisfiability Testing (SAT), pp. 165–184.
Springer, (2018)

[78] Acher, M., Collet, P., Lahire, P., France, R.B.: Comparing Approaches
to Implement Feature Model Composition. In: Proc. Europ. Conf. on
Modelling Foundations and Applications (ECMFA), pp. 3–19. Springer,
(2010)

[79] Rice, M., Kulhari, S.: A Survey of Static Variable Ordering Heuristics
for Efficient BDD/MDD Construction. Technical report, University of
California, Riverside (2008)

[80] Dowling, W.F., Gallier, J.H.: Linear-Time Algorithms for Testing the
Satisfiability of Propositional Horn Formulae. J. Logic Programming
1(3), 267–284 (1984)

[81] Wang, J., Gu, W., Yin, M., Wang, D.: MCN and MO: Two Heuristic
Strategies in Knowledge Compilation Using Extension Rule. In: Interna-
tional Conference on Signal Processing Systems (ICSPS), pp. 389–393
(2009)

[82] Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reason-
ing About Systems. Cambridge University Press, (2004)

[83] Pipatsrisawat, K., Darwiche, A.: New Compilation Languages Based on
Structured Decomposability. In: Proc. Conf. on Artificial Intelligence
(AAAI), vol. 8, pp. 517–522. AAAI Press, (2008)

[84] Darwiche, A.: Decomposable Negation Normal Form. J. ACM 48(4),
608–647 (2001)

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 45

[85] Darwiche, A.: New Advances in Compiling CNF to Decomposable Nega-
tion Normal Form. In: Proc. Europ. Conf. on Artificial Intelligence, pp.
318–322. IOS Press, (2004)

[86] Lagniez, J.-M., Marquis, P.: An Improved Decision-DNNF Compiler. In:
Proc. Int’l Joint Conf. on Artificial Intelligence (IJCAI), pp. 667–673.
International Joint Conferences on Artificial Intelligence, (2017)

[87] Muise, C., McIlraith, S., Beck, J.C., Hsu, E.: Fast d-DNNF Compilation
with sharpSAT. In: Proc. Conf. on Artificial Intelligence (AAAI). AAAI
Press, (2010)

[88] Koriche, F., Lagniez, J.-M., Marquis, P., Thomas, S.: Knowledge Com-
pilation for Model Counting: Affine Decision Trees. In: Proc. Int’l Joint
Conf. on Artificial Intelligence (IJCAI). AAAI Press, (2013)

[89] Van den Broeck, G., Darwiche, A.: On the Role of Canonicity in Knowl-
edge Compilation. Proc. Conf. on Artificial Intelligence (AAAI) 29(1)
(2015)

[90] Nishino, M., Yasuda, N., Minato, S.-i., Nagata, M.: Zero-Suppressed
Sentential Decision Diagrams. In: Proc. Conf. on Artificial Intelligence
(AAAI), pp. 1058–1066. AAAI Press, (2016)

[91] Oztok, U., Darwiche, A.: An Exhaustive DPLL Algorithm for Model
Counting 62(1), 1–32 (2018)

[92] Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Trans. on Computers C-35(8), 677–691 (1986)

[93] Jha, A., Suciu, D.: Knowledge compilation meets database theory:
Compiling queries to decision diagrams. In: Proceedings of the 14th
International Conference on Database Theory (ICDT), pp. 162–173.
ACM, (2011)

[94] Minato, S.-i.: Zero-Suppressed BDDs for Set Manipulation in Combina-
torial Problems. In: Proc. Anual Conf. on Design Automation (DAC),
pp. 272–277. ACM, (1993)

[95] Razgon, I.: On Oblivious Branching Programs With Bounded Repetition
That Cannot Efficiently Compute Cnfs of Bounded Treewidth. Theory
of Computing Systems 61(3), 755–776 (2017)

[96] Vinkhuijzen, L., Laarman, A.: The Power of Disjoint Support Decom-
positions in Decision Diagrams. In: NASA Formal Methods Symposium
(NFM), pp. 790–799. Springer, (2022)

Springer Nature 2021 LATEX template

46 On the Benefits of Knowledge Compilation for Feature-Model Analyses

[97] van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: Combining Reduc-
tion Rules from Different Decision Diagram Types. In: Proc. Int’l Conf.
on Formal Methods in Computer-Aided Design (FMCAD), pp. 108–115
(2017). IEEE

[98] Bryant, R.E.: Binary Decision Diagrams. In: Handbook of Model Check-
ing, pp. 191–217. Springer, (2018)

[99] Oztok, U., Darwiche, A.: On Compiling CNF into Decision-DNNF. In:
Proc. Int’l Conf. on Principles and Practice of Constraint Programming
(CP), pp. 42–57. Springer, (2014)

[100] Pett, T., Krieter, S., Thüm, T., Lochau, M., Schaefer, I.: AutoSMP: An
Evaluation Platform for Sampling Algorithms. In: Proc. Int’l Systems
and Software Product Line Conf. (SPLC), pp. 41–44. ACM, (2021)

[101] Nieke, M., Mauro, J., Seidl, C., Thüm, T., Yu, I.C., Franzke, F.: Anomaly
Analyses for Feature-Model Evolution. In: Proc. Int’l Conf. on Gen-
erative Programming: Concepts & Experiences (GPCE), pp. 188–201.
ACM, (2018)

[102] Pett, T., Thüm, T., Runge, T., Krieter, S., Lochau, M., Schaefer, I.:
Product Sampling for Product Lines: The Scalability Challenge. In: Proc.
Int’l Systems and Software Product Line Conf. (SPLC), pp. 78–83. ACM,
(2019)

[103] Oztok, U., Darwiche, A.: A Top-Down Compiler for Sentential Decision
Diagrams. In: Proc. Int’l Joint Conf. on Artificial Intelligence (IJCAI),
pp. 3141–3148. AAAI Press, (2015)

[104] Somenzi, F.: Efficient Manipulation of Decision Diagrams. Int’l J.
Software Tools for Technology Transfer (STTT) 3(2), 171–181 (2001)

[105] Janssen, G.: A Consumer Report on BDD Packages. In: Proc. Sympo-
sium on Integrated Circuits and Systems Design (SBCCI), pp. 217–222.
IEEE, (2003)

[106] Toda, T., Soh, T.: Implementing Efficient All Solutions SAT Solvers.
ACM J. of Experimental Algorithmics (JEA) 21(1), 1–12111244 (2016)

[107] Pett, T., Krieter, S., Runge, T., Thüm, T., Lochau, M., Schaefer, I.: Sta-
bility of Product-Line Sampling in Continuous Integration. In: Proc. Int’l
Working Conf. on Variability Modelling of Software-Intensive Systems
(VaMoS). ACM, (2021)

[108] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based

Springer Nature 2021 LATEX template

On the Benefits of Knowledge Compilation for Feature-Model Analyses 47

optimization for general algorithm configuration. In: Learning and Intel-
ligent Optimization: 5th International Conference, LION 5, Rome, Italy,
January 17-21, 2011. Selected Papers 5, pp. 507–523 (2011). Springer

[109] Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using Experimental
Design to Find Effective Parameter Settings for Heuristics. Journal of
Heuristics 7, 77–97 (2001)

[110] Tseytin, G.S.: On the Complexity of Derivation in Propositional Calcu-
lus, pp. 466–483. Springer, (1983)

[111] Bourhis, P., Duchien, L., Dusart, J., Lonca, E., Marquis, P., Quin-
ton, C.: Reasoning on Feature Models: Compilation-Based vs. Direct
Approaches. Technical Report arXiv:2302.06867, Cornell University
Library (2023)

[112] Sundermann, C., Raab, H., Heß, T., Thüm, T., Schaefer, I.: Exploiting
d-DNNFs for Repetitive Counting Queries on Feature Models. Technical
Report arXiv:2303.12383, Cornell University Library (2023)

[113] Voronov, A., Åkesson, K., Ekstedt, F.: Enumeration of Valid Partial
Configurations. In: Proc. Configuration Workshop (ConfWS), vol. 755,
pp. 25–31. ceur-ws.org, (2011)

[114] Sundermann, C., Heß, T., Nieke, M., Bittner, P.M., Young, J.M., Thüm,
T., Schaefer, I.: Evaluating State-of-the-Art #SAT Solvers on Indus-
trial Configuration Spaces. Empirical Software Engineering (EMSE) 28
(2023)

[115] Galindo, J.A., Benavides, D., Trinidad, P., Gutiérrez-Fernández, A.-M.,
Ruiz-Cortés, A.: Automated Analysis of Feature Models: Quo Vadis?
Computing 101(5), 387–433 (2019)

[116] Janota, M., Kiniry, J., Botterweck, G.: Formal Methods in Software
Product Lines: Concepts, Survey, and Guidelines. Technical Report
Lero-TR-SPL-2008-02, Lero, University of Limerick (2008)

[117] Lutz, R.: Survey of Product-Line Verification and Validation Techniques.
Technical Report 2014/41221, NASA, Jet Propulsion Laboratory (2007)

[118] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature Diagrams: A
Survey and a Formal Semantics. In: Proc. Int’l Conf. on Requirements
Engineering (RE), pp. 136–145. IEEE, (2006)

[119] Varshosaz, M., Al-Hajjaji, M., Thüm, T., Runge, T., Mousavi, M.R.,
Schaefer, I.: A Classification of Product Sampling for Software Product
Lines. In: Proc. Int’l Systems and Software Product Line Conf. (SPLC),

Springer Nature 2021 LATEX template

48 On the Benefits of Knowledge Compilation for Feature-Model Analyses

pp. 1–13. ACM, (2018)

[120] Medeiros, F., Kästner, C., Ribeiro, M., Gheyi, R., Apel, S.: A Compari-
son of 10 Sampling Algorithms for Configurable Systems. In: Proc. Int’l
Conf. on Software Engineering (ICSE), pp. 643–654. ACM, (2016)

	Introduction
	Background & Running Example
	Methodology
	Classifying Feature-Model Analyses
	SAT-Based Analyses
	#SAT-Based Analyses
	AllSAT-Based Analyses
	Algebraic-Based Analyses
	Summary

	Identifying Knowledge-Compilation Target Languages
	Survey Results
	Knowledge-Compilation Target Languages

	Evaluating Compiler Scalability
	Research Questions
	Subject Systems
	Knowledge Compilers
	Experiment Design
	Technical Setup

	Results
	Discussion
	Threats to Validity
	Random Effects and Computational Bias
	Compiler Parameters
	Formula Translations
	External Validity: Feature Models
	External Validity: Compilers

	Related Work
	Conclusion
	Future Work
	Conflict of Interests
	Data Availability

