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Abstract Product lines are widely used to manage families of products that
share a common base of features. Typically, not every combination (configu-
ration) of features is valid. Feature models are a de facto standard to specify
valid configurations and allow standardized analyses on the variability of the
underlying system. A large variety of such analyses depends on computing the
number of valid configurations. To analyze feature models, they are typically
translated to propositional logic. This allows to employ #SAT solvers that
compute the number of satisfying assignments of the propositional formula
translated from a feature model. However, the #SAT problem is generally as-
sumed to be even harder than SAT and its scalability when applied to feature
models has only been explored sparsely. Our main contribution is an inves-
tigation of the performance of off-the-shelf #SAT solvers on computing the
number of valid configurations for industrial feature models. We empirically
evaluate 21 publicly available #SAT solvers on 130 feature models from 15
subject systems. Our results indicate that current solvers master a majority of
the evaluated systems (13/15) with the fastest solvers requiring less than one
second for each successfully evaluated feature model. However, there are two
complex systems for which none of the evaluated solvers scales. For the given
experiment design, the solvers that consumed the least runtime are sharpSAT
(2.5 seconds in sum for the 13 systems) and Ganak (3.5 seconds).
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1 Introduction

A product line represents a family of products that share certain configuration
options, also called features [13| 20, 41l 86]. Each product is composed of a
distinct selection of features, called configuration [6]. However, systems typi-
cally contain constraints which limit the set of valid configurations (e.g., the
selection of one feature requires selecting another feature). These constraints
are typically specified as a feature model [9], [TT, 27] which consists of a tree
hierarchy and additional cross-tree constraints.

Managing a product line is typically complex due to the high number of
constraints [I3]. For example, one feature model we analyzed, representing an
automotive product line, contains more than 10,000 cross-tree constraints in
addition to hierarchical constraints. Manually keeping track of all these depen-
dencies is infeasible [87]. Consequently, a large variety of automated support
in terms of analyses has been proposed [11} 13}, 27} 37, 64} [74] [78], 82, B3], [87]. A
multitude of analyses is based on feature-model counting (i.e., computing the
number of valid configurations), such as uniform random sampling [66} [70} [34]
and detecting design errors [25] [33] [40, [43, 56, [89]. We refer to the number of
valid configurations of a feature model as its cardinality [89].

In the literature, the scalability of analyses that depend on computing
the number of valid configurations is largely unknown. Existing work either
focuses on single analyses (e.g., uniform random sampling of feature-model
configurations [69, [70l [84]), has not been evaluated on industrial feature mod-
els [33] 143, [78], or considers very few solvers or systems [56, [69, [70, 84]. In
this paper, we focus on propositional model counting (for short #SAT) which
determines the number of satisfying assignments for a given propositional
formula. As the translation of feature models to propositional logic is well-
researched [IT], [I3], #SAT solvers can be applied out of the box to compute
the cardinality of feature models. However, #SAT is at least as hard as SAT
because after computing #SAT (i.e., the number of satisfying assignments) it
is trivial to determine whether a formula is SAT (i.e., there is at least one sat-
isfying assignment). In general, #SAT is assumed to be harder [23, [95]. While
it is widely accepted that regular SAT is typically easy for industrial feature
models (compared to randomly generated formulas [64] [76]), this has not been
explored for #SAT.

In this work, we provide insights on the scalability of modern off-the-shelf
#SAT solvers for the analysis of feature models. Analyses based on feature-
model counting can only be applied in practice if available #SAT solvers scale
to industrial feature models considering time restrictions for typical use cases,
such as interactive settings [3] (15, B6] [54], R7] or continuous integration envi-
ronments [75]. We thus evaluate the runtimes of analyzing feature models with
publicly available #SAT solvers. Furthermore, we provide recommendations on
which solvers to use for analyzing feature models to reduce runtimes.

#SAT solvers rely on a variety of techniques to compute the number of
satisfying assignments. While some solvers only report the number of satisfying
assignments [12, [18, 23| [80, 03], other solvers apply knowledge compilation
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to different target languages, such as binary decision diagrams (BDDs) [1l
2, 94], deterministic decomposable negation normal forms (d-DNNFs) [30] 57,
60, sentential decision diagrams (SDDs) [72], and extended affine decision
trees [52]. The compiled target languages may be reused for further feature-
model analyses. We analyze the benefits of different techniques to identify
promising classes of #SAT solvers.

In general, the runtime required to analyze a feature model depends on
structural properties related to its size and complexity [33] [56, [64]. We provide
first insights on properties which induce a time-consuming computation for
every or some #SAT solvers. In particular, we analyze the correlation between
the runtimes and a variety of structural metrics.

For some feature models, it may be infeasible to compute an exact result
using publicly available solvers. In this case, approximate #SAT solvers, which
estimate the number of satisfying assignments for a given formula, may be
beneficial. We inspect the benefits of approximate #SAT solvers when applied
to industrial feature models.

Overall, we evaluate 19 exact and 2 approximate off-the-shelf #SAT solvers
which are publicly available. For our empirical evaluation, we consider 15 sub-
ject systems with overall 130 feature models. We provide the framework and
data used for the empirical evaluation on ZenodoEI In particular, our work
provides the following contributions:

1. We examine the performance regarding runtime of #SAT technology on
130 industrial feature models.

2. We identify best performing #SAT solvers out of 21 off-the-shelf tools.

3. We compare the benefits of different #SAT technologies.

4. We examine the correlation between the runtime of #SAT solvers and struc-
tural metrics of the feature model.

5. We inspect the performance of two approximate #SAT solvers.

6. We provide the number of valid configurations for feature models in our
dataset.

In this work, we extend our previous conference publication [90] regarding
the following aspects. First, we additionally evaluate ten more exact #SAT
solvers. Second, we examine the runtimes of two approximate #SAT solvers.
Third, we consider four additional subject systems. Fourth, we analyze the cor-
relation between the runtime and 12 structural metrics of the feature models.
Fifth, we improve the accuracy of our results by repeating the measurements
and applying statistical tests to study the significance of our results. Overall,
the evaluation subsumes the previous evaluation [90] except for analyzing the
evolution of systems. We consider a more thorough analysis (compared to the
previous evaluation [90]) of the evolution as out of scope for this work.

1 https://doi.org/10.5281/zenodo. 7329979
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Fig. 1: Example feature model adapted from Ananieva et al. [4]

2 Motivating Example

shows a feature diagram representing a simplified car product line.
A feature diagram is a commonly used visual representation of a feature
model [I3]. It visualizes the feature model’s tree structure and additional cross-
tree constraints given in propositional logic. The tree structure and the cross-
tree constraints specify the set of valid configurations. In our example, each
car of the product line requires a Carbody. This is indicated by the mandatory
property of the feature. In contrast, a Radio is an optional feature (i.e., it
may or may not be selected). A configuration that does not contain exactly
one of the Gearboz types, Manual or Automatic, is invalid, as they appear
in an alternative-relation in the feature diagram. Furthermore, the Ports of
a Radio include at least one of USB or CD. This relation is described by an
or-relation. The cross-tree constraint Navigation = USB represents that a car
with Navigation requires a USB port.

To analyze a feature model, we can use its cardinality (i.e., the number
of valid configurations). Consider the following scenario. The vast majority of
automatic cars are sold in the USA. As a consequence, a developer introduces
a new constraint Automatic = USA (automatic cars require digital maps for
the USA). Using a #SAT solver, the developer finds that the cardinality is 42
before the change and 25 afterwards. The immense decrease in the cardinality,
if unexpected, may already be an indicator for a design problem, because the
set of available cars is almost halved. Further, the cardinality can be combined
with domain knowledge for more sophisticated insights as follows. In the old
version, there are 21 cars with an Automatic gearbox and 21 cars with a
Manual gearbox. The newly introduced constraint has no impact on cars with
Manual. Thus, there are still 21 cars with Manual in the new version which
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implies that only 25 —21 = 4 valid configurations with Automatic remain. Due
to the tree hierarchy, the introduced constraint (Automatic = USA) requires
each automatic car to also have Radio, Navigation, DigitalMaps, and USB.
This side effect was probably unintended and can be fixed by changing the
constraint to Automatic A DigitalMaps = USA. While the original constraint
(Automatic = USA) induces an immense and possibly unintended reduction in
the variability, it introduces no traditional anomalies (e.g., core, false-optional,
or dead features; cf. [I3] for more details). Hence, in such cases it is hard to
detect the side effects with traditional SAT-based analyses. In the provided
scenario, we used the variability reduction of a feature model update to detect
side effects, one of 21 applications of #SAT we identified in previous work [89].

Without cross-tree constraints, computing the number of valid configura-
tions has linear time complexity in the number of features [43]. Only consider-
ing the tree-structure, the selections in a subtree are completely independent
of selections in other subtrees. Therefore, the cardinality of each subtree can
be computed separately. The cardinality of the feature model can be com-
puted by traversing the tree once and applying rules for each relation type,
recursively. For example, the cardinality of an alternative group is equal to the
sum of cardinalities of the subtrees induced by the children of the alternative
group. However, for feature models with cross-tree constraints, the proposed
procedure results in a wrong cardinality as interdependencies are disregarded.
Hence, a more sophisticated algorithm is required.

With cross-tree constraints, the number of configurations cannot be com-
puted in linear time complexity w.r.t. to the number of features. Every fea-
ture model can be translated to a propositional formula [64]. Furthermore, a
feature model that contains cross-tree constraints can represent every propo-
sitional formula and vice versa [51]. Thus, computing the satisfiability of a
model with those constraints is as hard as SAT and computing the number of
valid configurations is as hard as #SAT.

3 The Need for Feature-Model Counting

In our previous work [89], we surveyed a large variety of applications depen-
dent on the number of valid configurations of feature models. The presented
applications indicate the benefits of applying #SAT to feature models for mul-
tiple aspects, such as detecting design errors, economical estimations, and
guidance for developers. Overall, we found 21 applications gathered from the
literature or inspired by industry projects, one of which we exemplified in the
last section. In the following, we present some exemplary applications that
depend on computing the number of valid configurations provided in the orig-
inal work [89]. Each of the exemplary applications is inspired by insights of
our industry projects.

Variability Reduction. In we already introduced an example
of variability reduction to detect the side effect of a new constraint. Generally,
when working with product lines, it is infeasible to manually keep track of all
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possible side effects when applying changes [25] 42} 87]. These side effects are
especially difficult to detect if they introduce no traditional anomaly, such as
dead features [I3], or a void feature model [I3] (i.e., the feature model does
not describe a single valid configuration). In such cases, computing the cardi-
nality before and after a change may provide an indicator for faulty edits [89].
Another use case is willingly decreasing the cardinality to limit the variability
of a system during an evolution. However, in order to grasp the impact of such
changes it is necessary to know the cardinality before and after the change [16].

Feature Prioritization. In some scenarios, features can be prioritized
based on the number of valid configurations they appear in. For example, a
developer may have to decide which feature to develop next. Suppose the devel-
oper’s goal is to develop as many distinct products as possible. Consequently,
the developer wants to prioritize features that appear in a higher number of
valid configurations, which can be computed using a #SAT solver [89].

Uniform Random Sampling. As it is mostly infeasible to analyze a
configuration space by considering each single configuration, it is common to
create representative samples for a product line [66]. However, finding these
samples is not trivial [68] [69]. Uniform random sampling creates representative
(i.e., each valid configuration has the same chance to be included) samples [66].
One technique for uniform random sampling is to create a bijection between
integers and valid configurations. Suppose the cardinality of the feature model
is #FM. Then, by randomly selecting an integer within the range [1,... #FM],
each configuration has the same probability to be included in the sample. The
bijection can be achieved using #SAT by recursively assigning the features [66].
Following the algorithm of Munoz et al. [70], the number of valid configurations
needs to be computed for each assignment in the worst case. This requires an
efficient #SAT solver, especially for large systems [66].

4 Propositional Model Counting

In this section, we provide some background for propositional logic, the #SAT
problem, and different strategies employed by the evaluated solvers. Note that
this section is not necessary to understand the empirical evaluation. Hence,
the section can be skipped if considering the evaluated solvers as black boxes
is sufficient for the reader.

Let F' be a propositional formula and vars(F') the corresponding set of
variables with |vars(F)| = n. An assignment is a function « : vars(F) —
{0,1, undef} that maps variables contained in F to the truth values (0 or
1) or undefined (undef) [56]. Assignments can be partial, meaning that some
variables v € vars(F') are mapped to undef. Otherwise, the assignment is
called full [56]. For an assignment «, |a| < n corresponds to the number of
variables mapped to 0 or 1 in a. We use F(a) € {0,1} to denote whether
a full assignment « satisfies the formula F. We refer to assignments o with
F(a) =1 as satisfying,.
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Propositional model counting (for short #SAT) is defined as the prob-
lem of computing the number of satisfying full assignments of a proposi-
tional formula [38, (6]. #F = |{a | F(a) = 1}| corresponds to the num-
ber of satisfying full assignments of formula F. In the following, we present
three popular model counting methods employed by the majority of solvers in
our empirical evaluation, namely (Davis-Putnam-Logemann-Loveland) DPLL-
based [12), 18, 23] 8T, O3], d-DNNF-based [30, 57, [65], and BDD-based [94]
counting.

The algorithms based on exhaustive DPLL iteratively assign variables to
ultimately compute the number of satisfying assignments. The goal is to find
an assignment that either satisfies or does not satisfy the formula for each
possible assignment of the remaining n — || variables. If the formula evaluates
to false under «, the number of resulting satisfying assignments for « is 0. If
it evaluates to true, the number of satisfying assignments for o is 2"lol,
which is the number of possible assignments of the remaining variables. In
particular, a satisfying full assignment induces exactly 2"~" = 1 solution.
After computing a result for o, DPLL uses backtracking to find remaining
assignments. The backtracking algorithm is performed until each satisfying
assignment is covered. The sum of computed results is the exact number of
satisfying assignments [19].

Another possible way to compute the number of satisfying assignments are
d-DNNFs. The term d-DNNF stands for deterministic, decomposable negation
normal form [32]. A formula is in negation normal form (NNF) if the logical
operators are limited to A (conjunction), V (disjunctions), = (negations) and
negations only appear directly in front of literals [46]. A formula F is called
deterministic if each child Dy, ..., D,, of a disjunction D € F is logically dis-
junct (ie., Vi,j : 4 # j : D; AD; =1) [32]. Determinism implies that the
children D1, ..., D, of a disjunction D share no common solutions. Therefore,
the number of satisfying assignments of the disjunction is equal to the sum
of its children’s results (i.e., #D = > | #D;) [19]. A formula is called de-
composable if the children C1,...,C, of a conjunction C' share no variables
(ie., Vi,j : i # j : vars(C;) Nwars(C;) = 0) [32]. Decomposability implies
that assignments for variables of the children C4,...,C,, are independent of
each other as the variables are disjoint. It follows that the number of satisfy-
ing assignments of the conjunction is equal to the product of the results for
each child (i.e., #C = [[_, #C;) [19]. Using both properties (determinism and
decomposability), it is possible to compute the overall number of satisfying
assignments by traversing the formula once [19]. d-DNNF-based #SAT solving
corresponds to compiling a propositional formula to d-DNNF and then retriev-
ing the number of satisfying assignments by traversing the d-DNNF. After the
compilation, computing the model count takes linear time w.r.t. the number
of the d-DNNF nodes [30].

Finally, #SAT may also be computed using a binary decision diagram
BDD(F) representing the propositional formula F. A binary decision dia-
gram is a rooted directed acyclic graph two terminal nodes 1 and T. Every
non-terminal node z is associated with a variable v € vars(F) and has pre-
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cisely two outgoing edges, named low (setting v to false) and high (setting v
to true). Typically, one considers reduced ordered binary decision diagrams
(BDD) [21], 22] [62]. A BDD is ordered, if nodes associated to a variable v,
always precede nodes associated to a variable v; or vice versa. If a BDD is
reduced, then it (1) does not contain nodes with their low and high edges in-
cident with the same node and (2) no two nodes associated with the same
variable have the same nodes incident to their low and high edges. All sat-
isfying assignments for F' correspond to a path P from the root node to T
(1-path) in BDD(F). Let z,, be a node associated to the variable v. If the low
edge of x, is contained in P, then v is set to false. Analogously, v is set to
true if P contains the high edge of x,. If no node associated to v is contained
in P, then v can be assigned an arbitrary value. Consequently, every 1-path
induces 2"~ 17| satisfying assignments, where |P| is the number of edges in P,
and it suffices to iterate over all 1-paths in BDD(F) to compute #F:

#F =y 2vI” (1)

1-path P
in BDD(F)

This can be achieved in linear time with respect to the number of nodes in
BDD(F') [22]. BDDs are known to be sensitive to the order of variables and
there are examples in which one order results in a BDD with linear number of
nodes (w.r.t. the number of features) and another order results in a BDD of
exponential size [21].

The main difference between the solving techniques is the reuse of results.
DPLL-based solvers perform a single computation and typically just return the
number of satisfying assignments [12} 18] 23] 80, 93]. When using a BDD or d-
DNNF compiler, the resulting target format can be reused for further analysis.
For example, d-DNNFs and BDDs can be used to compute the number of
satisfying assignments under assumptions [28] 44], which could be used to
compute the number of valid configurations containing a certain feature or
an arbitrary combination of features (i.e., a partial configuration). Thus, if
multiple #SAT computations are required, compiling into d-DNNF or BDD
might be beneficial even if the compilation time takes longer than a DPLL-
based computation.

5 Experiment Design

In this section, we present the experiment design for our evaluation of #SAT
solvers on industrial feature models. We provide the required information for

the presentation (Section 6) and discussion (Section 7)) of the results. The

replication package for our empirical evaluation is publicly availableﬂ

In we explain the research questions we aim to answer in
our evaluation. In we present the gathered #SAT solvers and the

2 https://doi.org/10.5281/zenodo. 7329979
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methodology we used to collect them. In[Section 5.3 we discuss the selection of
subject feature models and provide information (e.g., number of features and
domain) of the underlying product line. In we describe the setup of
the experiments regarding the overall procedure of the measurements, consid-
ered solvers, considered systems, and applied statistical tests. In
we provide details on the technical setup for the evaluation.

5.1 Research Questions

In this section, we discuss the research questions that we aim to answer with
the empirical evaluation. The research questions provide insight on the gen-
eral scalability of #SAT technology, the performance of exact #SAT solvers
and solver classes, the correlation between structural metrics of the feature
model and the runtime of solvers, and the performance of approximate #SAT
solvers. Typically, feature-model analyses, such as counting, are applied in in-
teractive settings or in continuous integration. As those settings mandate short
runtimes, we consider an analysis to be scalable if it requires at most a few
minutes of runtimes.

RQ1 How do #SAT solvers perform on industrial feature models?

To use applications based on the feature-model cardinality in industry, we
need to identify solvers that scale for the task of analyzing industrial feature
models. Thus, we examine the performance of exact #SAT solvers regarding
the runtime when computing the cardinality of industrial feature models. Fur-
thermore, we aim to find the most efficient #SAT solvers to provide recommen-
dations on which #SAT solvers to use. Here, we consider the runtime required
to compute #SAT for given feature models as the efficiency of a solver.

RQ2 How do different classes of #SAT solvers perform on industrial feature
models?

We consider multiple classes of #SAT solvers (cf. . With RQ2,
we analyze the runtimes of different categories of solvers, namely (1) DPLL-
based, (2) algebraic-based, and knowledge compilers translating to (3) BDD,
(4) d-DNNF, and (5) other formats (i.e., EADT and SDD). We use the insights
to discuss the benefits of different solver categories and to give recommenda-
tions on promising techniques for counting-based analyses.

RQ3 How does the runtime of #SAT solvers correlate to structural metrics
of the feature model?

We aim to provide some first insights on which properties cause a feature
model to be hard to analyze for #SAT solvers. In particular, we examine if there
is a correlation between the performance of the #SAT solvers and structural
metrics related to the size and complexity of feature models. The insights
can be used as an indicator on the scalability of existing #SAT solvers for a
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given feature model depending on their structure. Furthermore, we identify
metrics that have a high impact on performance to find promising candidates
for more accurate performance predictions in the future. In[Table 1} we provide
a list of metrics we examined. For each metric, we provide a description and
instructions on how to compute the respective metric for a given feature model.
The metrics were collected by Bezerra et al. [I7] and Bagheri and Gasevic [§].
Those metrics are based on structural properties related to size (e.g., number
of features) or related to complexity (e.g., cyclomatic complexity).

RQ4 How do approximate #SAT solvers perform on industrial feature models?

In addition to exact #SAT solvers, we examine the performance of approx-
imate #SAT solvers which estimate the number of satisfying assignments for
a given formula. There are applications which require exact results, such as
uniform random sampling where approximate results would violate uniformity.
However, for a multitude of applications, an estimated cardinality may be of-
ten sufficient. For example, consider prioritizing features that appear in many
valid configurations for two features A and B with #4 = 10% and #B = 10°°.
For instance, an approximation that ensures that the result is at most 20
times larger/smaller than the exact count, would result in the same prioriti-

1

zations as exact results as 55 - 1055 > 20 - 1050, We examine the performance

of approximate #SAT solvers to provide insights on their benefits.

5.2 Evaluated #SAT Solvers

In the following, we present the #SAT solvers used in our empirical evaluation.
First, we describe our methodology of gathering the solvers. Second, we list the
identified solvers, group them by their type of computing #SAT, and provide
pointers where to find them.

Methodology. Our main goal for selecting the solvers is a representative cov-
erage of publicly available #SAT solvers. Such a coverage should allow for
conclusive results on (1) the current scalability of #SAT technologies when
applied to feature models and (2) recommendations on which solvers should
be used to analyze feature models at hand.

We included all solvers that satisfy the following criteria: First, the solver
needs to be publicly available (i.e., source code or binary is provided at gen-
erally accessible URL). Second, the tools have to accept CNFs in DIMACS
format as input. DIMACS is the de facto standard for representing CNFs and
used by the vast majority of SAT and #SAT solvers [12} [18] 29} [30} 80, BT, [94].
Third, the solver can be used as a standalone blackbox tool in contrast to tools
that require further setup (e.g., a client-server architecture [58]). Furthermore,
we excluded the tool GPUSAT [35] which performs #SAT on a GPU as we
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Number of Features

Description: Number of features in the feature model overall

Formula: | Features|, with Features being the set of features

Number of Leaf Features

Description:  Number of features in the feature model without children

Formula: |Leaves|, with Leaves being the set of leaf features

Number of Top Features
Description:

Number of children of the root feature
Formula:

|Top|, with Top being the set of children of the root feature

Number of Cross-tree Constraints
Description:

Number of cross-tree constraints in the feature model
Formula:

|CTC|, with CTC being the set of cross-tree constraints

Number of Clauses
Description:

Number of clauses in the CNF representing the feature model
Formula:

|Clauses|, with Clauses being the set of clauses in the CNF

Number of Literals
Description:

Number of overall literals appearing in the CNF
Formula:

| Literals|, with Literals being the set of literals in the CNF
CTC-Density
Description:

of features
Featuresorco
Formula: |Featurescro|

#Toaturas—+ With Featurescrc being the set of features appearing in a
cross-tree constraint.

Ratio of unique features appearing in CTC compared to overall number

Depth of Tree
Description:  Depth of the feature tree at the longest path
Formula: | Featuresrp|, with Featurespp being the set of features in the longest
path from the root to a leaf feature.

Flexibility of Configuration
Description:

Ratio of optional features compared to overall number of features
| Featuresopt |
Formula: By v

[Features| with Featuresp,; being the set of features that appear in
some but not all valid configurations.

Ratio of Variability

Description:  Average number of children

|childreny| . _ . ,
Formula: Zf g:;;ﬁt;\l Lﬂeb(ivg:l'kf| , with children; being the set of children of feature f.

Coefficient of Connectivity-Density

Description: ~ Number of edges between features compared to the number of features
d
Formula: 4Zf€;f?;‘2§;‘§—sf“f ‘, with edges; being the set of distinct edges connecting
features. For a clause (f1 V...V fp), there is an edge between every pair
of feature f1,..., fn.
Cyclomatic Complexity
Description: ~ Number of distinct cycles between features
Formula:

|cyclesy| with cycles; being the set of independent cycles spanned by edgesy

Table 1: Structural Feature-Model Metrics (RQ3)
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expect issues with the comparability if a solver uses different hardware. We
identified #SAT solvers with the following three approaches.

First, we collected work that performs counting-related analyses on prod-
uct lines [25] [33] 43] 56} 66 [68] [73] [78] to identify #SAT tools and respective
publications used in product-line analysis. Then, we performed (forward and
backward) snowballing from the identified publications. For backward snow-
balling, we employed data from Google Scholar. Second, we used a list of
publicly available #SAT solvers from the report of the model counting 2020
competition as comparison [34]. Both lists are similar with eleven shared #SAT
solvers. The list of the model counting competition contained one solver in
addition to the eleven shared solvers while the list from product-line analysis
contained four additional solvers. Due to the similarity in the identified solvers,
we argue that our list of #SAT solvers provides a reasonable representation
of current #SAT technology. Third, we added three #SAT solvers that entered
the model counting 2020 competition but were not published beforehandﬂ

Selected Solvers. Overall, we gathered 19 exact and 2 approximate #SAT
solvers. provides an overview on the exact solvers. The exact #SAT
solvers can be separated in three main categories: DPLL-based solvers, alge-
braic solvers, and knowledge compilers. We consider a knowledge compiler to
be a #SAT solver if the compiled target language and the compiler support
computing the number of satisfying assignments in polynomial time in the size
of the target formula.

Solver Type Target Format Reference
Cachet DPLL - [801 8]
countAntom DPLL - 23]

Ganak DPLL - [85]
PicoSAT DPLL - 18]

Relsat DPLL - [12]
SharpCDCL DPLL - [50]
sharpSAT DPLL - [93]

McTW Algebraic - MC Competition [34]
SUMC1 Algebraic - MC Competition [34]
ADDMC Algebraic - MC Competition [34]
c2d Compiler d-DNNF [29] 30]

d4 Compiler d-DNNF [57)

dSharp Compiler d-DNNF [65]

BuDDy Compiler BDD [
CNF20BDD Compiler BDD 94)

Cudd Compiler BDD 2]
CNF2EADT Compiler EADT 52]
MiniC2D Compiler SDD [72]

SDD Compiler SDD [31]

Table 2: Overview Exact #SAT Solvers

3 https://doi.org/10.5281/zenodo . 4292581
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The solver countAntom is the only solver which internally supports multi-
threading [23]. We evaluated countAntom with one and four available threads
separately to examine the impact of multi-threading on the runtime. We con-
sider evaluating countAntom also with four threads (opposed to only with a
single thread) as the more sensible option due to the following reasons: First,
it is reasonable to assume that multiple threads would be used in industrial
settings. Second, to allow multi-threading the developers of countAntom made
several adjustments which may put countAntom at a disadvantage when using
a single thread. Third, nevertheless, a larger number of threads may result in a
too large advantage for countAntom. During the remainder of the evaluation,
we refer to countAntom with four threads if not stated otherwise.

Neither BuDDy [I] nor CUDD [2] support parsing DIMACS directly. In pre-
vious work, we implemented a Python-based wrapper called ddueruenﬁ [44]
which uses the ctypes libraryﬂ to interface with their shared libraries and con-
struct the BDD using the API described in their respective manuals [II, 2]. As
suggested in the manuals of BuDDy and CUDD, we enabled automatic variable
reordering in both BuDDy and Cudd, using the converging variant of the sift
algorithm [79]. We decided to use our own wrapper ddueruem due to limita-
tions, namely the missing support for Cudd 3.0.0 and frequent crashes when
using BuDDy in the JavaBDljﬂ framework, which is often used for product-line
analysis [61] [62], [78].

In addition to the exact #SAT solvers, we also identified two approxi-
mate #SAT solvers, namely ApproxMC [24] and ApproxCount [96]. The solver
ApproxCount iteratively assigns variables to reduce the complexity of a for-
mula. For each assigned variable, the solver estimates the resulting reduction
in the number of satisfying assignments. After a user-specified number of as-
signed variables, the exact #SAT solver Cachet is executed with the simplified
formula as input. The estimated reduction is then applied to the result of the
simplified formula to derive an approximated number of satisfying assignments
for the original formula. In our previous work [90], every feature model with
less than 1,000 features was successfully evaluated by most #SAT solvers. Fol-
lowing this insight, we directed ApproxCount to start the exact computation
at 1,000 remaining variables. For ApproxMC, we used the default parameters.

5.3 Subject Systems

The main goal of the empirical evaluation is to examine the applicability of
#SAT solvers for analyzing feature models. We argue that the applicability
mainly depends on the scalability on industrial feature models, as artificial
models might not be representative for industrial usage as observed in other
domains [5, 44]. Therefore, we only use industrial feature models as subject

4 https://github.com/SoftVarE-Group/emse-evaluation-sharpsat/tree/v1.0/
solvers/ddueruem

5 https://docs.python.org/3/library/ctypes.html
6 http://javabdd.sourceforge.net/


https://github.com/SoftVarE-Group/emse-evaluation-sharpsat/tree/v1.0/solvers/ddueruem
https://github.com/SoftVarE-Group/emse-evaluation-sharpsat/tree/v1.0/solvers/ddueruem
https://docs.python.org/3/library/ctypes.html
http://javabdd.sourceforge.net/

14 Sundermann et al.

systems. We consider a feature model to be industrial if it fulfills the following
two criteria: (1) it specifies the variability of a product line used in the real
world and (2) it does not vastly simplify the complexity (in terms of features
and constraints) of the product line. Note that we only consider variability
of the problem space (i.e., which valid configurations do exist) opposed to
variability in the solution space (i.e., how and where to implement variability).

Selected Systems. With our selection of subject systems, we aim for a wide cov-
erage of different domains. We evaluate the performance of the listed #SAT
solvers on feature models taken from industrial product lines from the auto-
motive, operating system, database, and financial services domain.
provides an overview on the considered feature models, sorted by the number
of features, including name, number of features, number of constraints, and
the work they were originally published in. The index ¢ indicates the position
of the subject system in diagrams in

First, we analyze feature models provided by Kniippel et al. [51]E] The
authors extracted the systems from snapshots of an automotive product line
and by translating KConfig and CDL models. KConﬁﬁ is a language de-
signed for managing Linux configurations and CDL for managing eCosﬂ a
configurable operating system for embedded applications [51]. The consid-
ered KConfig models are azTLS, uClibc, uClinuz-base, Embtoolkit, uClinuz-
distribution, and Linuz. In addition, Kniippel et al. provide an automotive
product line Automotive02. Second, we evaluate the solvers on BusyBox pro-
vided by Pett et al. [75]@ Third, we include a feature model from the Fi-
nancialServices domain [67, [76]. Fourth, we consider the systems Automo-
tive0! [53] and BerkeleyDB [48] which are available as FeatureIDE exam-
plesE Fourth, we were given access to industrial models for three different
systems from the automotive domain (Automotive03-Automotive05). These
models were provided in a proprietary format. With the help of company in-
terns, we translated their configuration knowledge into feature models. For our
entire experiment, we translated each feature model to the DIMACS format
using FeatureIDE 3.5.5[7]

For some subject systems, namely Automotive02-05, FinancialServices,
and BusyBoz a history of feature models is available, each representing a
unique timestamp. For each feature model with a history, we consider only
the latest version. Thoroughly analyzing the entire history is out of scope and
left as future work.

In previous experiments [90], we found that the 116 CDL models are highly

similar regarding a variety of metrics (i.e., all metrics considered [Section 5.1)
and also resulted in similar runtimes for #SAT solvers. If we evaluated the

7 https://github.com/AlexanderKnueppel/is-there-a-mismatch
8 https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
9 https://ecos.sourceware.org/

10 https://github.com/TUBS-ISF/Stability-of-Productline-Sampling

11 https://github.com/FeatureIDE/FeatureIDE

12 https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.5.5
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[

Subject Systems #Features  #Constraints  Orig. Source

BerkeleyDB 1 76 20
axTLS 2 96 14 ol
uClibe 3 313 56 51]
uClinux-base 4 380 3,455 [51]
Automotive04 5 531 623  Confidential
Automotive03 6 588 1,184  Confidential
BusyBox 7 631 681 75|
FinancialServices 8 771 1,080 |67, [76]
Embtoolkit 9 1,179 323 51
CDL (116 Models) 10 1,178-1,408 816-956 [51]
uClinux-distribution 11 1,580 197 [51]
Automotive05 12 1,663 10,321  Confidential
Automotive0l 13 2,513 2,833
Linuxv2.6.33.3 14 6,467 3,545 ol
Automotive02 15 18,616 1,369 [51]

Table 3: Overview Subject Systems (Sorted by #Features)

different CDL models as distinct systems, 89.2% of the overall 130 (14 other
+ 116 CDL) evaluated feature models are CDL models which results in a huge
bias of the results. Therefore, we consider the median of runtimes over the
116 different CDL models as the runtime of the CDL subject system in every
experiment if not stated otherwise. To show the similarity in the performance
of #SAT solvers, we also present the runtimes on the different CDL models in

Section 6

5.4 Experimental Setup

In this section, we describe the procedure of the experiments conducted to
gather insights to answer our research questions.

To analyze the feature models with #SAT solvers, we translate each feature
model into conjunctive normal form (CNF) and store it in DIMACS format.
We invoke the #SAT solvers with the DIMACS as input. As the translation to
CNF typically requires only a few milliseconds and is equivalent for each solver,
we do not include the translation time in the overall runtime. Furthermore, we
set a timeout of ten minutes (cf. RQ1 in for evaluating a single
feature model as the baseline for the experiment. The threshold is motivated
by applying counting-based analyses in interactive settings and continuous-
integration environment which should not exceed a few minutes of runtime to
provide fast feedback to developers after changing a feature model.

An important aspect we consider for our benchmark is the trade-off be-
tween significance of results and ecological footprint. If a solver hits the timeout
of ten minutes for every single one of the 130 feature models, the evaluation
would require almost a day of continuous runtime considering a single repe-
tition. Performing a number of repetitions that allows for significant results
would require substantially more runtime. For instance, when using 50 repe-
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Table 4: Overview Experiments

Experiment Solvers #Reps. RQI1 RQ2 RQ3 RQ4
Experiment 1la  All Exact #SAT 1 X X
Experiment 1b  Remaining Exact #SAT 50 X X X
Experiment 1c = Remaining Exact #SAT 1 X X
Experiment 2a  All Approximate #SAT 1 X
Experiment 2b  Remaining Approximate #SAT 50 X

titions this would potentially result in more than 11 years of nonstop compu-
tation time. Thus, we aim to reduce the overall runtime of the experiments
while preserving significant results.

In the following, we explain the performed experiments in detail.
provides an overview over the two experiments regarding considered solvers,
considered research questions, and number of performed repetitions per mea-
surement.

Ezxperiment 1: Scalability of Exact #SAT Solvers. In the first experiment, we
measure the runtimes of the exact #SAT solvers (cf. on the con-
sidered feature models (cf. . For the solvers based on knowledge
compilation, we consider the overall runtime to compile and compute a result.
We use the insights of this experiment to answer RQ1, RQ2, and RQ3. The
experiment is separated into three stages.

In the first stage (Experiment 1la), we identify and filter slow #SAT solvers.
Here, we measure the runtime of each of the 19 exact #SAT solvers on the 15
subject systems. The idea of Experiment la is to remove slow solvers from the
following two stages that significantly increase the overall runtime for the ex-
periments. We consider a solver to be slow if the solver requires more than 50%
of additional runtime compared to the following solver when ordered by over-
all runtime for the experiment. We refer to the solvers that are not excluded
as remaining solvers. In the second stage (Experiment 1b), we perform the
measurements with the remaining #SAT solvers with 50 repetitions for each
feature model for more robust results. In the third stage (Experiment 1c), we
further evaluate the runtimes of the remaining solvers on subject systems for
which no solver computed a result in Experiment 1a and 1b. Here, we perform
one repetition and increase the timeout to 24 hours to examine whether an
increase of the timeout allows a successful computation.

Orthogonal to the measurements of Experiment 1a, 1b, and 1c, we examine
the number of valid configurations for the considered feature models. Here, we
use the results computed by the solvers.

Ezxperiment 2: Scalability of Approximate #SAT Solvers. In the second exper-
iment, we examine the scalability of the two considered approximate #SAT
solvers on each feature model to provide insights for RQ4. Furthermore, we
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Table 5: Overview Statistical Tests

Use Case Sample Statistical Tests RQ1 RQ2 RQ3 RQ4

Comparison Solvers System  Unpaired  Mann-Whitney [60] X X X

Comparison Solvers Overall — Paired Friedman Test [206] X X X
Post-Hoc Conover [26]

Correlation Solver/Metric Paired Spearman [98| X

give a comparison to the exact #SAT solvers to evaluate the benefits. Anal-
ogous to Experiment la, we also perform an initial experiment referred to
as Experiment 2a with only one repetition per measurement to exclude slow
solvers from the following experiments. Then, we repeat the measurements
with 50 repetitions on the remaining approximate #SAT solvers (Experiment
2b), analogous to Experiment 1b.

Statistical Tests. We apply the following statistical tests to evaluate the signif-
icance of our results depending on the use case. gives an overview on
the use cases, tests we used for each use case, and the RQs that are dependent
on the given use case.

For the first use case Comparison Solvers System, we compare the per-
formance of different solvers on each of the feature models separately. For
the comparison, we consider the 50 repetitions of a solver/system combina-
tion as sample. Here, we apply a Mann-Whitney significance test [60] as we
have unpaired samples and do not assume a normal distribution. For the tests,
we assume the typical significance level of o = 5%. We use the scipyvl1.7.2
implementation of Mann—WhitneyH

For the second use case Comparison Solvers Overall, we compare the overall
performance of the different #SAT solvers on all 15 subject systems. For the
comparison, each data point corresponds to the median of runtimes over the
50 repetitions for a combination of subject system and solver. Here, we apply
a Friedman Test followed by a Post-hoc Conover test on the samples of all
solvers as we have paired samples (pairs of subject systems) and again do
not assume a normal distribution [26]. For the tests, we assume a significance
level @ = 5%. We use the scipyv1.7.2 implementation of Friedmarﬂ and the
scikit_posthocs implementation of Post-Hoc ConoverE

For the third use case Correlation Solver/Metric, we evaluate the correla-
tion between the runtime of #SAT solvers and structural metrics (cf. RQ3).
Here, we use Spearman’s correlation coefficient 7, [98] to evaluate the strength
of the correlation. For two variables, r, describes their correlation with a value

13 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
mannwhitneyu.html

14 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
friedmanchisquare.html

15 https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.
posthoc_conover/
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between -1 and 1. The values 1 and -1 describes a very strong positive or neg-
ative correlation, respectively. rs = 0 indicates that the variables have no
correlation at all. We expect that Spearman’s coefficient provides more sensi-
tive results (compared to Pearson’s coefficient) due to the following reasons [7].
First, Spearman’s coeflicient is suitable to detect non-linear relationships be-
tween the variables, and it is possible that the correlation between a metric
and the runtimes is not linear. Second, there may be significant outliers which
tend to cause problems for the expressiveness of Pearson’s coefficient.
shows the levels of correlation strength for the Spearman’s coefficient s we
use. We use the scipyvl.7.2 implementation of Spearman to compute the
correlation coefficientd™]

Correlation Value Range
Very Weak 0<|rs|] <0.2
Weak 0.2 < |rs] <04
Moderate 0.4<|rs] <06
Strong 0.6 <|rs| <0.8

Very Strong 0.8 < |rs| < 1.0

Table 6: Spearman: Levels of Correlation

In addition to significance tests, we compute effect sizes [88] for samples
shown to be significantly different. In particular, we employ Cohen’s d which
describes the difference between the median of two samples relative to the
standard deviation [88]. shows the levels of effect sizes with their
range of d values [8].

Effect Size Value Range
Very Small 0<d<0.2

Small 02<d<0.5
Medium 0.5<d<0.8
Large 0.8<d< 13

Very Large 1.3<d

Table 7: Cohen: Levels of Effect Size

5.5 Technical Setup

Each experiment was performed on a Linuz CentOS 8 system with 6/-bit
architecture. The evaluated machine uses an Intel Core Broadwell Processor

16 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.
html
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that consists of 16 sockets with one core each. The clock rate is 2,394 Mhz and
the machine contains 62 GB of RAM. For each computation and experiment,
we limit the memory usage to 8 GB due to the following two reasons. First,
we assume that a memory limit of 8 GB reflects the capacity for RAM usage
on common PCs or notebooks. Second, in preliminary experiments, we found
that further increasing the memory limit yields little to no benefits for the
runtimes of #SAT solvers. For the measurements, we implemented a Python
framework to (1) call the solver binaries and provide the input, (2) measure
the runtimes with the timeit modulem and (3) limit the memory usage. For
reproducibility, the framework, solvers, and input data are publicly availablelEI
Hyper-threading, turboboost, and caching of the file system were disabled during
the entire measurements to reduce computational bias. Furthermore, no other
major computations were run on the system during the experiments.

6 Results

In this section, we present the results of our empirical evaluation separated
into the two presented experiments.

6.1 Experiment One: Exact #SAT Solvers

Experiment 1a. shows the runtime of all exact #SAT solvers on each
subject system. Each point on the x-axis corresponds to one of the 15 subject
systems. The systems are sorted by the number of features in ascending order
(ctf. . The y-axis shows the runtime of the different solvers with a
logarithmic scale. The different categories are indicated by the colors of the
markers ( = DPLL, purple = algebraic, green = d-DNNF, blue = BDD,
gray = knowledge compilers to other formats). The red line indicates that a
solver hits the timeout. The blue line indicates that an error occurred or a
solver passed the memory limit. CDL Median corresponds to the median over
all 116 CDL feature models (cf. [Section 5.3). The majority of systems (13/15)
was successfully evaluated within 10 minutes by at least one solver. For each
of the 13 solved systems, the fastest solver required less than one second.
However, none of the solvers was able to compute the cardinality of the other
two systems, namely Automotive05 and Linuz.

shows the sum of runtimes of each evaluated exact #SAT solver
on all 15 subject systems in Experiment la. Each bar corresponds to the sum
of runtimes for one solver. Note that this sum only includes the median of
runtimes for the 116 CDL models instead of the overall sum (cf. .
Considering a timeout of 10 minutes per system, the maximum runtime is 150
minutes (hitting the timeout for all 15 systems) which is indicated by the red
line. The solvers are sorted by the overall sum of runtimes (ascending). If a

17 https://docs.python.org/3/library/timeit.html
18 https://doi.org/10.5281/zenodo. 7329979
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Fig. 2: Runtime in Seconds for All Exact #SAT Solvers

subject system could not be evaluated due to timeout, memory limit, or an
arbitrary error, we added the timeout (10 minutes) to the overall runtime.
gives an overview of the performance for the different solvers. Eight
of the solvers, namely sharpSAT, Ganak, countAntom (both with four and
one thread), d4, Cachet, dSharp, MiniC2D, and c2d evaluated 13 out of 15
(86.7%) subject systems within eleven minutes of runtime. The eleven slower
solvers, namely McTW, Relsat, ADDMC, CNF2EADT, SDD, CNF20BDD, SUMC1, BuDDy,
Cudd, SharpCDCL, and PicoSAT, successfully evaluated at most 73.3% of the 15
subject systems with a timeout of ten minutes for each model. Furthermore,
the fastest of the slower solvers (McTW) requires around 60% more runtime than
the slowest of the faster solvers (c2d). Overall, the eleven slower solvers took
96.8% of the total runtime (10.2 days) required for Experiment la. Performing
the 50 repetitions with all solvers would result in around 1.4 years of continuous
computation just for Experiment 1b. For all following experiments, we only
include the eight fastest #SAT solvers. In the excluded solvers are
marked with an X-mark in the column remaining. In the dashed
violet line marks the cut for the excluded solvers. Each solver on right side of
the line is excluded from the following experiments.

Each BDD-based #SAT solver successfully evaluated at most 6 of the 15
systems and required at least 92 minutes overall. Every d-DNNF-based solver
needed less than 31 minutes for all subject systems and only failed to evaluate
Linux and Automotive05.
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Fig. 3: Runtime of all Solvers to Evaluate the 15 Subject Systems

Solver Solved % Solved  Ov. Runtime (s) Remaining
sharpSAT 13 87 1,202.6 v
Ganak 13 87 1,203.4 v
count Antom4t 13 87 1,207.8 v
countAntom1t 13 87 1,210.2 v
dSharp 13 87 1,212.7 v
d4 13 87 1,230.1 v
Cachet 13 87 1,339.9 v
miniC2D 13 87 1,733.6 v
c2d 13 87 1,818.9 v
mcTw 11 73 2,892.0 X
Relsat 9 60 3,602.4 X
ADDMC 9 60 3,625.0 X
CNF2EADT 8 53 4,504.1 X
SDD 8 53 4,705.7 X
CNF20BDD 6 33 5,5658.1 X
SUMC1 6 33 5,721.8 X
BuDDy 3 20 7,206.6 X
Cudd 3 20 7,206.8 X
SharpCDCL 0 0 9,000.0 X
PicoSAT 0 0 9,000.0 X

Table 8: Overview Experiment la
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Fig. 4: Runtime in Seconds for All Exact #SAT Solvers on CDL Models

shows the runtime of the 19 exact #SAT solvers for the 116 CDL
feature models. Each point on the x-axis corresponds to one CDL model. The
y-axis shows the runtime of different solvers in seconds with a logarithmic scale.
For all solvers but Cachet, the median runtime over all 116 feature models is
smaller than two times the minimum value (i.e., the shortest runtime required
for one of the 116 feature models for that solver). Also, the maximum is always
smaller than two times the median. The results support our claim in[Section 5.3|
that CDL models are highly similar and handling them as separate subject
systems would result in a bias of the measured runtimes.

Ezxperiment 1b. In Experiment 1b, we measured each combination of the fea-
ture models and the eight remaining solvers with 50 repetitions for more reli-
able results (cf.[Section 5.4)). [Figure 5|shows the median runtimes and standard
deviation for each solver-system combination. In the remainder of this section,
we only consider the 13 systems successfully evaluated by at least one of the
solvers if not stated otherwise. Considering the overall sum of runtimes, the
three solvers requiring the least runtime are sharpSAT (2.5 seconds), Ganak
(3.3 seconds), and countAntom (7.8 seconds). Over the 13 systems, sharpSAT
is significantly (p < 0.03) faster than every #SAT solver but Ganak, Cachet,
and dSharp. However, each effect size is small (d < 0.47) which matches the
expectations as the large differences in runtime between the subject systems
for each solver result in a large standard deviation.
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Fig. 5: Runtime (Median & Standard Deviation) in Seconds for Remaining
Exact #SAT Solvers

sharpSAT is significantly (p < 0.004) faster with mostly (88.1%) very large
effect sizes (d > 1.53) than all other solvers on 6 of the 13 systems. Ganak is
significantly (p < 107!!) faster than all other #SAT solvers with very large
effect sizes (d > 1.61) for Automotive03. countAntom is significantly faster
(p < 10717) than all other solvers with very large effect sizes (d > 1.73) on all
116 CDL models but for no other system. Cachet is significantly (p < 1077)
faster than all other solvers for three smaller (less than 1,200 features) systems,
namely azTLS, embToolkit, and BerkeleyDB with all effect sizes being very
large (d > 1.38) but one with a medium effect size (d = 0.78).

We also compared countAntom with four and one thread. countAntom with
four threads is significantly (p = 0.028) faster than with one thread for the 13
systems overall. Still, countAntom with one thread is significantly (p < 0.036)
faster for three subject systems, namely embtoolkit (d = 0.60), uClinuz-base
(d = 0.82), and Automotive03 (d = 0.21). Overall, countAntom with four and
one thread require 7.8 and 9.2 seconds of runtime, respectively.

[Table 9] shows the correlation between structural metrics of the feature
models and the runtime of #SAT solvers. ’Correlation Fastest’ shows the cor-
relation between each metric and the runtime of the fastest solver for each
instance. Note that the fastest solver varies depending on the evaluated fea-
ture model. There is a very strong positive (r; > 0.8) correlation between the
runtime and the following metrics: number of features, number of leaf features,
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Metric Coeflicient Fastest Coefficient Range
Number of Literals 0.89 (very strong)  0.82 (very strong)-0.89 (very strong)
Number of Clauses 0.87 (very strong)  0.80 (very strong)-0.87 (very strong)
Number of Features 0.85 (very strong) 0.73 (strong) —0.94 (very strong)
Number of Leaf Features 0.82 (very strong) 0.68 (strong) —0.92 (very strong)
Number of Constraints 0.81 (very strong) 0.67 (strong)-0.84 (very strong)
Cyclomatic Complexity 0.77 (strong) 0.64 (strong)—0.79 (strong)
Tree Depth 0.34 (weak) 0.29 (weak)—0.39 (weak)
Connectivity Density 0.20 (weak) 0.11 (very weak)—0.57 (moderate)
Ratio of Variability 0.11 (very weak) -0.01 (very weak)—0.27 (weak)
Number of Top Features 0.06 (very weak) -0.01 (very weak)—0.17 (very weak)
Flexibility of Configuration  0.07 (very weak) -0.01 (very weak)—0.18 (very weak)

Table 9: Correlation between Structural Metrics and Runtime of #SAT Solvers

number of cross-tree constraints, number of literals, and number of clauses.
Consequently, for instance, the runtime of #SAT solvers tends to increase if the
number of features increases. Also, there is a strong correlation between the
cyclomatic complexity and the runtime. Every other metric correlates either
weakly (0.2-0.39) or very weakly (rs < 0.2) with the runtime of the fastest
solver. ’Correlation Range’ shows the minimum and maximum correlation be-
tween a metric and a solver. For every metric that has a strong correlation with
the runtime of the fastest solver, each solver has an at least strong correlation.
This observation is analogous for weakly correlated metrics with one exception
(countAntom has a moderate correlation with the connectivity density).

[Figure 6| and [Figure 7] show the runtime of the eight remaining solvers
in relation to the number of features and the number of constraints, respec-
tively. In each diagram, both scales are logarithmic. Every system with either
fewer than 1,000 features or 1,000 constraints was evaluated within 0.5 sec-
onds. While there is a strong correlation between the runtimes of the #SAT
solvers and both metrics (i.e., number of features and constraints), a feature
model with respectively more features or constraints does not guarantee a
longer runtime. The two systems that reached the timeout, namely Linux and
Automotive05, contain 6,467 and 1,663 features. Automotive02 which contains
18,616 features was evaluated within 0.5 seconds. It is important to note that
Automotive02 contains only 1,369 constraints while Linuz and Automotive05
contain 3,545 and 10,321 constraints, respectively. Also, uClinuz-base contains
3,455 constraints, but the fastest solver is about 50 times faster than for Au-
tomotive02.

Ezperiment 1c. In Experiment 1lc, we invoked the remaining solvers with a
timeout of 24 hours for the two systems which hit the timeout for every solver
in every repetition, namely Automotive05 and Linux. Neither of the remaining
eight solvers was able to compute the cardinality for either system within 24
hours.
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Feature-Model Cardinalities. [Table 10]shows the cardinalities (i.e., the number
of valid configurations) of the evaluated subject systems. The systems are
sorted by their number of features. Note that the computed cardinalities are
equal for all solvers. For Linux and Automotive05, the cardinality is unknown
as no solver was able to compute a result. For the remaining systems, the
cardinality ranges from 4.1 -10° (BerkeleyDB) to 1.7 - 10'%3% (Automotive02).

shows the cardinality of the 13 successfully evaluated subject
systems in relation to their number of features. There is a very weak pos-
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Subject Systems Number of Valid Configurations
BerkeleyDB 4.1-109
axTLS 8.3- 101!
uClibc 1.7 100
uClinux-base 2.6 - 1022
Automotive04 2.5-102!
Automotive03 2.5-1031
BusyBox 2.1-10201
FinancialServices 9.7-1013
Embtoolkit 5.1-10%
CDL (116 Models) 2.6- 10118 — 3.0 10136
uClinux-distribution 4.1-10%09
Automotive05 unknown
Automotive0l 5.4 -10217
Linux unknown
Automotive02 1.7 - 101534

Table 10: Cardinalities of Subject Systems (Sorted by #Features)
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Fig. 8: Cardinality of Subject Systems in Relation to Number of Features

itive correlation between the number of features and the cardinality (0.03
with Spearman). In several cases, a feature model with fewer features has a
higher cardinality. For instance, BusyBox has 631 features and a cardinality
of 2.1 -10%°! while FinancialServices has 771 features and a cardinality of
9.7 - 10'3. Still, the three feature models with the largest number of features
also have the highest cardinality. For instance, Automotive02 has by far the
largest cardinality 1.7-10'34 and also seven times more features than Automo-
tive01 which has the second-highest number of features (disregarding Linux
as we do not know its cardinality).
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Fig. 9: Runtime in Seconds for Approximate #SAT Solvers

6.2 Experiment Two: Approximate #SAT Solvers

FExperiment 2a. shows the runtimes of both evaluated approximate
#SAT solvers on each feature model. ApproxMC hit the timeout of ten minutes
for each but the two smallest models, namely azTLS (96 features) and Berke-
leyDB (76 features). Consequently, ApproxMC was excluded for Experiment 2b.
ApproxCount hit the timeout for four subject systems.

Experiment 2b. shows the runtimes of the best performing approx-
imate #SAT solver (ApproxCount) with the exact #SAT solver that required
the least time overall, namely sharpSAT. ApproxCount hit the timeout for four
subject systems, while sharpSAT hit the timeout for two subject systems. For
all 13 feature models that were successfully evaluated by at least one solver,
sharpSAT is significantly faster than ApproxCount (p < 0.0002) with very large
(d > 5.1) effect sizes for every single feature model. Furthermore, ApproxCount
needs 5 minutes for 11 out of 15 systems while sharpSAT requires less than 2
seconds for those.

7 Discussion

In this section, we discuss the results regarding our research questions.
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RQ1 How do #SAT solvers perform on industrial feature models? Our re-
sults indicate that the scalability of the #SAT solvers depends on the evaluated
feature model. Based on our results, we expect that most industrial feature
models can be evaluated within minutes or even seconds by the faster #SAT
solvers we identified. Overall, 13 of the 15 analyzed feature models were suc-
cessfully evaluated within 10 minutes. In addition, the fastest solver for each
of those feature models required even less than one second which we consider
scalable as it satisfies typical time restrictions of interactive environments and
continuous integration environments. Nevertheless, there are systems for which
no available #SAT solver scales. In our experiment, two systems, namely Au-
tomotive05 and Linux, could not be evaluated by any solver not even within
a timeout of 24 hours. Our results indicate that the hardness of both systems
lies in their high number of features and constraints (c.f. the answer for RQ3).

Eight solvers, namely sharpSAT, Ganak, countAntom, dSharp, d4, Cachet,
MiniC2D, and c2d, successfully evaluated 13 of 15 systems within 10 minutes
of overall runtime. sharpSAT requires the least time to evaluate the 13 subject
systems (2.6 seconds overall) closely followed by Ganak (3.4 seconds). While
some solvers performed overall better than others, none of the solver is superior
to the other solvers on every feature model. The results indicate that some
solvers are inferior regarding the task of computing the cardinality of feature
models, namely PicoSAT, Relsat, SharpCDCL, McTW, SUMC1, CNF20BDD, BuDDy,
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Cudd, CNF2EADT, and SDD. Those solvers hit the timeout for at least four subject
systems and some even for all systems while being substantially slower for the
systems they successfully evaluated.

RQ2 How do different classes of #SAT solvers perform on industrial feature
models? For single #SAT invocations, as performed in the experiment design
at hand, we recommend the usage of the fastest DPLL-based solvers. The three
best performing solvers, namely sharpSAT, Ganak, and countAntom are based
on exhaustive DPLL.

For multiple #SAT invocations, reusing d-DNNFs seems promising. All d-
DNNF compilers are part of the eight fastest solvers. For each feature model,
that was successfully evaluated by at least one solver, the fastest d-DNNF-
based solvers dSharp and d4 require at most a few seconds in sum for com-
pilation and model counting. For each follow-up computation, the compiled
d-DNNF could be re-used (e.g., for computing the number of valid config-
urations containing certain features). Hence, we expect d-DNNF solvers are
likely faster when performing multiple computations, which is required for
the majority of counting-based analyses [89]. SDDs can also be re-used and,
thus, are a considerable candidate but the best performing SDD-based solver
(MiniC2D) was substantially slower than dSharp (42 times slower) and d4 (18
times slower).

The remaining types of #SAT solvers, namely algebraic-based, BDDs, and
other knowledge compilation formats performed substantially worse than the
eight fastest solvers. Both algebraic solvers, namely ADDMC and SUMC1, over-
all successfully evaluated only nine (60%) of the subject systems. Hence, we
excluded both solvers after Experiment la, and we cannot recommend using
these solvers for #SAT-based analysis of feature models. The three BDD li-
braries overall successfully evaluated only six (40%) subject systems. BuDDy
and Cudd even hit the timeout for 12 of 15 subject systems. Therefore, we do
not recommend to use current BDD libraries for computing the cardinality of
feature models. Nevertheless, BDDs are tractable (i.e., have polynomial time
complexity w.r.t. to the size of the BDD) for additional computation types,
such as existential quantification [22]. Using BDDs for other feature-model
analyses may thus still be beneficial.

RQ3 How does the runtime of #SAT solvers correlate to structural metrics
of the feature model? The runtime required to compute the cardinality of a
feature model generally increases if the feature model grows in size or complex-
ity. There is a strong or very strong positive correlation between the runtime
of #SAT solvers and several structural metrics related to size and complexity,
namely number of features, number of leaf features, number of constraints,
number of clauses, and number of literals.

Feature models with few features or constraints seem to be simple to ana-
lyze for #SAT solvers. Each subject system with less than 1,000 features was
evaluated within one second by at least one solver, independent of the number
of constraints. Analogously, all subject systems with less than 1,000 constraints
were evaluated by at least one solver within one second, independent of the
number of features.
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While both systems for which no solver computed a result have at least
3,500 constraints, a large number of features, or constraints do not neces-
sarily cause a time-consuming computation. The Automotive02 system con-
tains by far the most features (18,616), but sharpSAT still evaluated it in less
than a second. The reason probably lies in the comparatively low number of
constraints (1,369) while Linuz and Automotive05 contain 3,545 and 10,321
constraints, respectively. Furthermore, uwClinuz-base contains 3,455 constraints
but the fastest solver is about 50 times faster than for Automotive02 which
contains only 1,369 constraints.

Our insights indicate that, independent of structural metrics, one of the
fastest solvers should be used. There is no single feature model for which one
of the fastest eight solvers fails, while another #SAT solver computes a result.
Thus, we expect that if the fastest solvers do not scale to a feature model, the
others will also fail.

Predicting performance based on structural metrics may still be beneficial.
For instance, countAntom is slower than sharpSAT for 12 out 13 (successfully
evaluated) subject systems, but significantly faster for all 116 CDL feature
models. Applying a meta #SAT solver that selects a suitable #SAT solver for a
given feature model should yield runtime benefits. Our insights on the corre-
lations between structural metrics and runtime may be a useful starting point
for future work on predicting performance. In particular, the metrics showing
a strong correlation are promising indicators for predicting performance.

RQ4 How do approximate #SAT solvers perform on industrial feature mod-
els? Approximating the results with the evaluated approximate #SAT solvers
yields no benefits as we can acquire exact results with shorter runtimes. In par-
ticular, the fastest exact solver sharpSAT is significantly faster than both ap-
proximate #SAT solvers for every single successfully evaluated feature model.
The slower solver ApproxMC computed a result only for the two smallest con-
sidered feature models. While ApproxCount computed a result for the majority
of models, it scaled to fewer feature models than the fastest exact #SAT solver
sharpSAT.

A reason for the worse performance of approximate #SAT solvers may
be that the solvers were evaluated on (and eventually optimized for) formu-
las from different domains with generally fewer satisfying assignments. The
largest formulas evaluated induce up to 10'? [24] and up to 1033 [96] satisfying
assignments, respectively (compared to up to 10134 in our evaluation). Opti-
mizing those approximations for formulas representing feature models may be
beneficial.

8 Threats to Validity

We identified the following potential threats to validity for our evaluation.

Translating the Subject Systems to Feature Models. It is possible that the
translation from the original proprietary format into a feature model changes
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the variability. Kniippel et al. remarked some threats to internal validity re-
garding their translation of product lines [51]. First, there are differences be-
tween feature model semantics and the semantics of the variability languages
used for CDL and KConfig. Second, the translation may have removed a few
cross-tree constraints. Third, a few cases lead to features that did not appear
in the input format [51I]. Still, this is the largest available benchmark and has
been used by other authors [10} 55, [77]. Pett et al. [75] translated the BusyBox
model to CNF using KClause [7()]@ Then, the authors translated the CNF
into feature model that is equivalent to the CNF and, thus, should maintain
the variability. In addition to publicly available subject systems, we translated
three automotive product lines into feature models from a proprietary format.
It is possible that we misinterpreted given constraints. However, we created the
parser in direct cooperation with company interns. Furthermore, the interns
reviewed the resulting feature models.

Translating Feature Models to the DIMACS Format. An incorrect translation
of feature models to CNF may lead to incorrect cardinalities. Another im-
portant aspect of the translation to CNF is that the number of satisfying
assignments has to be equal for the resulting CNF. This is not given for every
conversion method [51]. For every translation to CNF in DIMACS format, we
used the FeatureIlDE library [49]. FeatureIDE uses a transformation that does
not introduce new variables nor changes the number of solutions. Neverthe-
less, we performed the following sanity checks to ensure a correct translation.
First, we manually computed the model count of small feature models (< 100
valid configurations and only few cross-tree constraints) and compared these
results with the ones computed by the solvers. Second, we made changes to the
feature model that should change the model count in a certain way. For exam-
ple, we added an optional feature to the root which should always double the
number of valid configurations and verified that the #SAT solvers computed
the expected result.

We did not consider the time required to translate the feature model to
CNF. However, the translation time is equivalent for all #5AT solvers as they
use the same CNF. Furthermore, for all feature models but Linux the trans-
lation required only a few milliseconds.

Wrapper for BuDDy and Cudd. As described in[Section 5.2 we used a wrapper
to interface with BuDDy and Cudd, due to their incapability to process DIMACS
directly. The implementation of our wrapper for BuDDy and Cudd could be
erroneous or inefficient, yielding a negative impact on their performance. While
parsing of the input is handled by the wrapper, the BDDs are constructed
entirely by BuDDy and Cudd using the parameters and techniques suggested
in their respective manuals. For each successful computation of BuDDy and
Cudd, the returned number of satisfying assignments was correct. Furthermore,
for every feature model the parsing time of the wrapper required less than

19 https://doi.org/10.5281/zenodo . 2574218
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one second and at most 10% of the overall runtime. Note that each time
BuDDy or Cudd required more than one second of runtime the relative share
of parsing time is even lower (at most 2%). Thus, we consider the parsing
time of the DIMACS input is negligible compared to the overall runtime and
do not expect an impact on our conclusions on the performance of BuDDy
or Cudd. Furthermore, we decided against using the widely used [61, [62] [78]
library JavaBDD as it misses support for the latest version of Cudd (3.0.0) and
frequently crashes when using BuDDy.

Parameterization of the Solvers. Typically, there are various parameters to
adapt the behavior of the solvers, such as enabling or disabling boolean con-
straint propagation. These parameters may have a noticeable impact on the
scalability in some cases [96]. In general, we used the default parameterization
for each solver to achieve the following: (1) prevent introducing a bias based
on our decision of the parameterization, and (2) evaluate the solver’s perfor-
mance when integrated without further expertise which we typically expect in
practice. In general, evaluating multiple parameter permutations multiplica-
tively vastly increases the complexity, required time, and ecological footprint
of the performed experiments.

Correctness of the Solvers. We used only external solvers without a possibility
of directly verifying the results. However, for every subject system the number
of satisfying assignments returned by each solver was equal. This is a strong in-
dicator for the correctness of the solvers. Furthermore, we manually computed
the cardinality for multiple small feature models (< 100 valid configurations)
and compared them to the results of #SAT solvers.

Computational Bias. When performing measurements, it is possible that a
program accelerates during the computations. In this case, early measurements
might be slower than later ones. In our benchmark framework, each single
invocation of a #SAT solver is performed in a separate execution of the binary.
Thus, the solvers are in the same state at the start of each computation. It
may be possible that hardware optimizations induce a warm-up. We disabled
turboboost and file system cache to reduce a potential bias.

In general, it is possible for a background process to influence the runtime
of a solver and, thus, impact our results. First, we disabled hyper-threading.
Second, we performed a preliminary experiment with five repetitions for each
solver several months prior to the evaluation described in this work which re-
sulted in the same conclusions regarding the performance of the solvers. Third,
during the 50 repetitions of Experiment 1b, the solvers always had very sim-
ilar runtimes for the same feature model. Fourth, during the runtime of the
experiments no other computational expensive task was performed on the de-
vice and each measurement was performed sequentially. Fifth, we occasionally
monitored the available RAM and CPU resources. Every time we tracked,
there were at least 40 GB of RAM available and less than 15% of the CPU
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used. Therefore, we do not expect that any conclusion we made is impacted
by a background process.

Single Measurements for Slow Solvers. For slow solvers, we only performed
one repetition per measurement. It is possible that for 50 repetitions the me-
dian significantly differs from a single measurement for some feature models.
Nevertheless, neither solver was excluded after Experiment 1la due to single or
few measurements but due to a large gap to the fastest #SAT solvers.

Random Effects. 1t is possible that the runtimes of #SAT solvers are affected
by random effects. For example, c2d [29] [30] randomly chooses cuts in order
to create a decomposition tree of the formula at the start of the computation.
To reduce the bias resulting from randomness, we performed 50 repetitions
in Experiment 1b and Experiment 2b and performed statistical tests on the
significance of results.

External Validity Solvers. Our results cannot be necessarily transferred to
other #SAT solvers. For instance, Kiibler et al. [56] developed their own tool to
compute the cardinality of feature models. Their tool is not publicly available
and, thus, we could not evaluate and compare it to other solvers. Nevertheless,
we evaluated a large variety of different #SAT solvers. To the best of our
knowledge, we included each publicly available #SAT solver in our benchmark.

External Validity Systems. We cannot claim that our results can be trans-
ferred to any other industrial product lines. However, we considered multiple
domains, namely automotive, operating system, database, and financial ser-
vices to increase our confidence. We overall evaluated 130 feature models which
cover a wide range of number of features (76-18,616), number of constraints
(20-10,321), number of valid configurations (~ 109-10'%3%), and runtime of
#SAT solvers (between few milliseconds and hitting a timeout of 24 hours).
Therefore, we expect that our results represent a reasonable indicator for the
scalability of #SAT solvers on other product lines.

9 Related Work

In this section, we discuss work that is related to ours regarding (1) applying
#SAT to feature models, (2) usage of #SAT technology in feature-modelling
tools, and (3) computing the cardinality with tools that are not based on
propositional logic.

Applying #SAT to Feature Models. Kiibler et al. [56] also evaluated the use
of two #SAT solvers, Cachet [80] and c2d [30], on three different versions of
an automotive product line. We evaluated both solvers and they were outper-
formed by newer solvers on most instances. However, the authors also proposed
their own model counter that was not based on conjunctive normal form and
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performed better than Cachet and c2d. However, their solver and their evalu-
ated product lines are not publicly available. Therefore, we could not directly
compare the results. Overall, we evaluated 21 solvers on 130 formulas while
Kiibler et al. evaluated 3 solvers on 3 formulas.

Pohl et al. [78] evaluated different feature model analyses including model
counting using BDDs, constraint-satisfaction-problem solvers, and SAT solvers.
However, the authors used models with much smaller configuration spaces and
fewer features for their evaluation. Their analyzed configuration spaces only
reached up to 10® valid configurations whereas 97.3% of our feature models
have larger configuration spaces with up-to 1034 valid configurations.

Oh et al. [70] evaluated the application of #SAT for uniform random sam-
pling with their tool Smarch. Their results indicate that #SAT can be used to
create a uniformly distributed sample for a variety of industrial feature mod-
els. However, their evaluation is limited to one application (uniform random
sampling) and limited to one solver (sharpSAT). Sharma et al. [84] proposed
using #SAT technology for uniform random sampling and provided an algo-
rithm exploiting d-DNNFs. However, their empirical evaluation is also limited
to uniform random sampling and two solvers (d4 and dSharp). We evalu-
ate 21 solvers including the three solvers considered by Oh et al. [70] and
Sharma et al. [84].

Current Tool Support for #SAT Technology. BDDs are a popular choice for
counting the number of valid configurations in a product line as it is possible
to compute the BDD offline and then compute the cardinality with linear
time in the number of nodes [3, B9, [63]. However, our results indicate that
existing BDD libraries do not scale to industrial feature models. Additionally,
d-DNNFs can be computed offline as well and performed significantly better
than BDDs in all our experiments [32].

FeatureIDE uses a regular SAT solver (SAT4J [59]) to compute the num-
ber of valid configurations [92]. The tool realizes counting with a regular SAT
solver using blocking clauses [94]; after finding a valid assignment «, the nega-
tion of «v is added as a clause to the formula. Thus, « is not a valid assignment
for the resulting formula and the next run of the solver returns another assign-
ment until no new satisfying assignments are left. For each satisfying assign-
ment (i.e., valid configuration), an invocation of the SAT solver is required.
Our results indicate that industrial feature models induce up to 10150 valid
configurations. Therefore, the algorithm should not scale for larger systems.

Non-Propositional Model Counting. Constraint satisfaction problems (CSP)
are an alternative to propositional logic for the representation of feature mod-
els [13] [I4] [16, [78]. CSPs are defined by a set of variables, domains for each
variable, and constraints over these variables. For CSPs, the variables may also
be integers or intervals, contrary to propositional boolean variables which are
strictly binary [13]. Benavides et al. [I6] use constraint programming (CP) to
compute the number of valid configurations for feature models. However, the
models considered in their experiment only included up to 23 features [16].
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Pohl et al. [78] compare SAT solvers, BDDs, and CSP solvers for several
feature-model analyses that include computing the cardinality. Their results
indicate that the analyzed CSP solvers scale far worse than the #SAT solvers
evaluated in our experiment [78]. Munoz et al. [66] examined counting the
number of valid configurations of feature models with numerical features for
uniform random sampling. The authors evaluated an SMT solver, a CP solver,
and the #SAT solver sharpSAT. The numerical values were translated to propo-
sitional logic using bit-blasting [66]. In their experiment, sharpSAT outper-
formed the CP and SMT solver. This indicates that #SAT solvers are also a
reasonable choice for computing the number of valid configurations for fea-
ture models with numerical values and our results (e.g., recommendations of
solvers) could also be useful for non-propositional model counting.

10 Future Work

In this section, we describe further tasks in applying #SAT solvers to industrial
feature models.

Cardinality of Features and Partial Configurations. In this work, we limited
our empirical evaluation to computing the cardinality of feature models (i.e.,
the number of valid configurations of the entire feature model). In our pre-
vious work [89], we presented 21 applications and a major part of them is
dependent on the cardinality of (possibly many) features (i.e., number of valid
configurations that contain a specific feature) or the cardinality of partial con-
figurations (i.e., number of valid configurations that include some and exclude
some other features). The runtimes of computing the cardinality of the entire
feature model (as measured in our empirical evaluation) can be used as esti-
mate for computing the cardinality of a feature or a partial configuration due
to the similar input formulas [89]. Nevertheless, to provide accurate insights
on the scalability of these applications, an empirical evaluation for computing
the cardinality of features and partial configurations is required.

Analyzing #SAT During the Evolution of Systems. Often, product lines evolve
over time [91]. Typically, underlying feature models grow both in number of
features and constraints [47,[90]. As we found a strong correlation between the
scalability of #SAT and both metrics (i.e., number of features and number of
constraints), the evolution of a system may increase the runtime required to
evaluate an underlying feature model with a #SAT solver. This is also indicated
by the preliminary results of our previous work [90]. If a product lines evolves
over time, even product lines for which #SAT solvers scale currently may be
infeasible to analyze in the future or vice versa.

Ezxploit d-DNNFs for Cardinality-Based Analyses. In our empirical evalua-
tion, all three d-DNNF compilers, namely dSharp, d4, and c2d were part of



36 Sundermann et al.

the eight fastest solvers. If we require multiple computations on a single fea-
ture model (e.g., to compute the cardinalities for multiple features or partial
configurations), exploiting a compiled d-DNNF may be beneficial. However,
the research on exploiting an existing d-DNNF is very limited [84] as most
work focuses on the compilation process [29] B0} [45] 67, [65] [7T]. While SDDs
and BDDs are also considerable target formats for knowledge compilation, all
compilers based on these formats performed significantly worse than dSharp
and d4.

Parameterize #SAT Solvers. In this paper, we invoked the #SAT solvers using
the default parameters with a few exceptions (e.g., some solvers require spe-
cific parameters to perform #SAT instead of SAT). Other parameterizations
(e.g., selecting strategies for variable ordering) may improve the performance
of #SAT solvers. Especially, the runtime of approximate #SAT solvers is de-
pendent on the given parameters. However, identifying effective parameters is
not trivial. To use #SAT solvers to their full potential requires finding suitable
parameters that result in efficient and effective computations.

Further Metrics for a Meta-Solver. Our results show that the solvers perform
differently depending on the system. None of the solvers is faster than all other
solvers for every feature model. Analyzing structural metrics of the feature
model may enable an efficient meta-solver that selects the most promising
solver depending on a given instance. For regular SAT, it is already known that
selecting a solver based on a given formula often improves the performance [97].

Directly Translate Feature Models to Target Format. For every experiment,
we used propositional formulas in conjunctive normal form. The translation
to CNF was not considered in the runtime. However, for the larger systems,
the translation requires a considerable amount of time. Directly translating
the feature model to knowledge compilation target formats, such as BDDs or
d-DNNFs, might result in two benefits. First, the time overhead of translating
the model to CNF would be eliminated. Second, using structural information
of the feature model may accelerate the translation to the target format.

Purpose-Built Solvers for Analyzing Feature Models. None of the analyzed
#SAT solvers and knowledge compilers is optimized for feature models. Op-
timizing the computations specifically for feature models may improve the
performance of solvers. One improvement may be deriving beneficial vari-
able orders using structural information of the feature model. The perfor-
mance of each considered type of solver is highly dependent on variable order-
ing [29] [65] 8T, 93], 94], [96].

11 Conclusion

A large variety of feature-model analyses is dependent on computing the car-
dinality of features models [89]. However, the scalability of such analyses is
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largely unknown. We analyzed 19 exact and 2 approximate #SAT solvers on
the task of computing the cardinality of industrial feature models. Overall, we
evaluated the #SAT solvers on 130 feature models from 15 subject systems.

Our results strongly indicate that current #SAT solvers scale to many, but
not to all systems. Out of the 15 evaluated systems, eight solvers computed the
cardinality of 13 (86.7%) systems within 10 minutes per system. The solver
with the overall shortest runtime is sharpSAT requiring less than three seconds
for all 13 models in total. However, for the two remaining systems, namely
Linuxz and Automotive05, none of the solvers was able to compute a result
within 24 hours of runtime.

While no solver was strictly superior to all other solvers, we identified sev-
eral promising #SAT solvers for the task of computing the cardinality of fea-
ture models. For single #SAT computations on feature models, we recommend
using the DPLL-based solvers sharpSAT, countAntom, and Ganak. For applica-
tions requiring multiple #SAT invocations, reusing d-DNNFs seems promising.
All three considered d-DNNF compilers, namely dSharp, d4, and c2d, were
within the fastest eight solvers. Surprisingly, each approximate #SAT solver we
evaluated is significantly slower than the fastest exact #SAT solver for every
considered feature model and, thus, yields no benefits over the exact solvers.

The runtime of all #5AT solvers tends to increase for feature models with a
larger number of constraints or features. Each feature model with either fewer
than 1,000 features or fewer than 1,000 constraints was evaluated within one
second by the solver with the shortest runtime for that feature model. Nev-
ertheless, the results indicate that a higher number of constraints or features
does not necessarily result in longer runtimes.
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