
Views on Edits to Variational Software
Paul Maximilian Bittner

paul.bittner@uni-ulm.de

University of Ulm

Ulm, Germany

Alexander Schultheiß

alexander.schultheiss@hu-berlin.de

Humboldt University of Berlin

Berlin, Germany

Sandra Greiner

sandra.greiner@unibe.ch

University of Bern

Bern, Switzerland

Benjamin Moosherr

benjamin.moosherr@uni-ulm.de

University of Ulm

Ulm, Germany

Sebastian Krieter

sebastian.krieter@uni-ulm.de

University of Ulm

Ulm, Germany

Christof Tinnes

christof.tinnes@siemens.com

Siemens AG

München, Germany

Timo Kehrer

timo.kehrer@inf.unibe.ch

University of Bern

Bern, Switzerland

Thomas Thüm

thomas.thuem@uni-ulm.de

University of Ulm

Ulm, Germany

ABSTRACT
Software systems are subject to frequent changes, for example

to fix bugs or meet new customer requirements. In variational

software systems, developers are confronted with the complexity of

evolution and configurability on a daily basis; essentially handling

changes to many distinct software variants simultaneously. To

reduce the complexity of configurability for developers, filtered

or projectional editing was introduced: By providing a partial or

complete configuration, developers can interact with a simpler view
of the variational system that shows only artifacts belonging to that

configuration. Yet, such views are available for individual revisions

only but not for edits performed across revisions. To reduce the

complexity of evolution in variational software for developers, we

extend the concept of views to edits. We formulate a correctness

criterion for views on edits and introduce two correct operators for

view generation, one operator suitable for formal reasoning, and a

runtime optimized operator. In an empirical study, we demonstrate

the feasibility of our operators by applying them to the change

histories of 44 open-source software systems.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; Software evolution.

KEYWORDS
software variability, software evolution, software product lines,

projectional editing, variation control

ACM Reference Format:
Paul Maximilian Bittner, Alexander Schultheiß, Sandra Greiner, Benjamin

Moosherr, Sebastian Krieter, Christof Tinnes, Timo Kehrer, and Thomas

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0091-0/23/08.

https://doi.org/10.1145/3579027.3608985

Thüm. 2023. Views on Edits to Variational Software. In 27th ACM Inter-
national Systems and Software Product Line Conference - Volume A (SPLC
’23), August 28-September 1, 2023, Tokyo, Japan. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3579027.3608985

1 INTRODUCTION
Developing variational software confronts developers with com-

plexity in two dimensions [3, 80]. First, developers face variation in
time as the software varies with each revision over the course of its

development (e.g., to fix bugs). Second, variation in space denotes
that the software is configurable (e.g., via conditional compilation),

requiring developers to deal with multiple software variants si-

multaneously. Combined, both dimensions require developers to

reason on edits that affect potentially millions of software variants

at once [56, 78].

To manage both dimensions of variability, variation control sys-

tems [50] offer workflows [4] based on projectional editing
1
[31,

34, 77, 85], also known as filtered editing [16, 50, 68] or view-based

editing [5]. The central idea is that developers can edit a complex

variational system in terms of a view that shows only a subset of

the system relevant for the current task. To checkout a view for

editing, developers provide a complete [23, 68] or partial configura-

tion [77, 85] of the configuration options existing in the variational

system at a certain revision. Developers can modify the view and

commit it against a description of the edited features — usually a

partial configuration but a single feature in the simplest case [4, 50].

Consequent updates of the underlying complex software are per-

formed automatically and hidden from the user.

While projectional editing reduces the complexity of modifying

variational software, it does not allow for performing views on edits

in the revision history. For instance, code reviewers may want to

focus on the features they are responsible for. When backporting

new bugfixes to older but stable versions of the software, it is

necessary to adopt only the subset of changes that can be applied, as,

for example, in the development of the Linux kernel [72]. However,

when multiple features are edited in the same revision, developers

are confronted with all changes at once.

1
Considered in the mathematical sense where a projection builds a view, not in the

model-driven engineering sense where the abstract syntax is edited.

https://orcid.org/0000-0001-9388-0649
https://orcid.org/0000-0002-1509-1449
https://orcid.org/0000-0001-8950-0092
https://orcid.org/0009-0004-2670-8127
https://orcid.org/0000-0001-7077-7091
https://orcid.org/0000-0002-1320-1480
https://orcid.org/0000-0002-2582-5557
https://orcid.org/0000-0001-8069-9584
https://doi.org/10.1145/3579027.3608985
https://doi.org/10.1145/3579027.3608985
Paul Bittner
Sticky Note
This is the author's version of the work. The main goal of this PDF is to give up-to date comments and information around the work, including follow-up work and already identified mistakes.If you have any questions or comments, please get in contact with the authors.



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr, S. Krieter, C. Tinnes, T. Kehrer, T. Thüm

To the best of our knowledge, reducing the complexity of edits to

variability in terms of projectional editing has not been addressed

yet. Semantic history slicing [44, 70, 71, 88] analyzes the history of

a program, for example, to find semantically related commits, or

to identify all commits that contributed to a bug or certain lines

of code. Commit untangling [15, 45, 58, 61, 73, 87] and similar

techniques identify which development concerns are addressed by a

set of changes with the goal of grouping the changes by the concern

they address. Untangling is performed based on a broad spectrum

of heuristic criteria such as dependencies between changes, text

similarity, location in a file, or overlap of changes between commits

but not for possible variability. Feature revisions [5, 49] allow for

selecting a feature in a specific revision but not for performing a

view on the edit which may have introduced or modified it.

In this paper, we contribute the theoretical foundations for views

on edits to variational software and demonstrate empirically that

such views can be computed fast in practice. We observe that views

on edits can be described in terms of views on single revisions.

Based on this observation, we formalize a correctness criterion

for views on edits. We propose two algorithms for view gener-

ation and prove their correctness: One algorithm that emerges

from the correctness criterion and is suitable for formal reasoning,

and a runtime-optimized algorithm. In an empirical study on 44

real-world and open source software product lines, we study the

feasibility of view generation practice. In summary, we contribute:

View Types that generalize state-of-the-art views on revisions to

other relevant types of views apart from partial configuration

(Section 4),

Theoretical Foundations in terms of a correctness criterion and

two functions for generating views on edits to variational

software (Section 5), and a

Feasibility Study that demonstrates that generating views on ed-

its to variational software can be generated automatically

and fast (Section 6).

2 PRELIMINARIES
Based on an exemplary user story, we motivate practical use cases

for views on edits to variational software. Afterwards, we explain

how we describe variability and edits to it as a basis for formalizing

views on edits in the following sections.

2.1 Motivating Example
Consider a team of C++ developers that implements variational

software through conditional compilation [6]. The software in-

cludes a method prepend for a linked list, shown in Listing 1. The

method prepend inserts a given element e as the new list head.

C preprocessor annotations, starting with #, conditionally in- or

exclude source code from compilation. Developers obtain a variant

of the software by specifying values for each preprocessor annota-

tion, being Ring and DoubleLink here. For instance, introducing
the statement #define DoubleLink 0 excludes Lines 9–14 from the

resulting C++ program whereas selecting the feature through the

statement #define DoubleLink 1 includes them. Hence, the feature

DoubleLink ensures elements being doubly-linked upon insertion,

and selecting feature Ring optionally turns a list into a ring such

that the last element is linked to the first one.

1 void prepend(T e) {
2 Itm* newHead = new Itm(e);
3 newHead->suc = head;
4 #if Ring
5 if (empty())
6 last = newHead;
7 #endif
8 last->suc = newHead;
9 #if DoubleLink
10 head->prev = head;
11 #if Ring
12 newHead->prev = last;
13 #endif
14 #endif
15 head = newHead;
16 }

Listing 1: Variability imple-
mented with the C prepro-
cessor in a C++ method.

1 void prepend(T e) {
2 Itm* newHead = new Itm(e);
3 newHead->suc = head;
4 #if Ring
5 if (empty())
6 last = newHead;
7 -#endif
8 last->suc = newHead;
9 +#endif
10 #if DoubleLink
11 + if (head) {
12 - head->prev = head;
13 + head->prev = newHead;
14 + }
15 #if Ring
16 newHead->prev = last;
17 #endif
18 #endif
19 head = newHead;
20 }

Listing 2: Three bug fixes to
the code in Listing 1.

1 void prepend(T e) {
2 Itm* newHead = new Itm(e);
3 newHead->suc = head;
4 #if Ring
5 if (empty())
6 last = newHead;
7 -#endif
8 last->suc = newHead;
9 +#endif
10 head = newHead;
11 }

Listing 3: Bob’s view

1 void prepend(T e) {
2 Itm* newHead = new Itm(e);
3 newHead->suc = head;
4 - last->suc = newHead;
5 #if DoubleLink
6 + if (head) {
7 - head->prev = head;
8 + head->prev = newHead;
9 + }
10 #endif
11 head = newHead;

Listing 4: Charlotte’s view

Imagine the developer Alice detects and fixes bugs in Listing 1

with the patch shown in Listing 2. First, the scope of the feature

Ring is wrong: The successor of the last element is set to the first

element, even in variants without feature Ring. Alice fixes this bug
by moving the #endif in Line 7 to Line 9 thereby extending the

scope of the annotation #if Ring to include last->suc = newHead.
Second, for empty lists, the method crashes in feature DoubleLink
as head->prev is undefined. Thus, Alice inserts a check whether

the head exists in Lines 11 and 14. Third, she fixes the wrong double

link by removing Line 12 and inserting Line 13. These changes affect

multiple features and derivable variants of the software.
Suppose a second developer Bob is responsible for the feature

Ring but is not experienced in DoubleLink. As Alice’s edits affected
multiple features, it may not be obvious to Bob how his feature Ring
changed. In a code review, Bob wants to focus on and see changes

only to Ring, particularly as commits may encompass more patches

than just a single one. Listing 3 presents the desired view on Alice’s

edit that only includes the feature Ring. Now, for example, Bob can

run tests of variants in- or excluding only that feature.

Assume a third developer Charlotte is in charge of deploying

older but stable revisions of the software to customers. Charlotte

considers Alice’s fixes crucial to those stable revisions. Yet, the

feature Ring does not exist in the stable revisions. Applying Alice’s

patch directly is impossible because the patch changes lines that



Views on Edits to Variational Software SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

do not exist. Alice’s patch could be applied to the stable revisions

by removing the changes to Ring. Listing 4 represents this patch,
which is a view on Alice’s patch excluding the code of feature

Ring. In this patch, Line 4 appears as deleted although Alice’s edit

did not change it. Alice moved the line to feature Ring, thereby
removing it from its prior annotation. Requiring recent changes in

stable revisions is known as patch backporting — a crucial task, for

instance, in developing the Linux kernel [72].

In summary, both, Bob and Charlotte, face issues that may be

solved by views on a patch to variational software. While we em-

ploy a fictive running example for brevity and focus, similar and

more complex cases arise in practice and have been studied in the

past [14, 29, 50, 77, 85]. Developers often edit multiple features

in a single commit [54, 82] and the C-preprocessor is used at a

large-scale to implement variability [29, 46]. In fact, the sometimes

excessive usage of preprocessor annotations is referred to as the

#ifdef-hell [22, 42, 51, 53]. Concluding, views on edits address the

need to assist the maintenance of large variational software.

2.2 Background on Software Variability
Introducing variability aims at reusing source code by identifying

common and different parts among software variants, typically

expressed in terms of features [6, 18, 64]. Usually, features denote
distinct functionality relevant to customers [9]. Different variability

mechanisms [6] map domain artifacts at different levels of granular-

ity, such as lines of source code (as shown in Listing 1), nodes in the

abstract syntax tree [33], entire files or modules (also referred to as

compositional variability) [6], or model elements in model-based

engineering [24], onto features or combinations thereof [10, 17, 26].

The mapping is usually referred to as the artifact’s presence condi-
tion as it embodies a condition under which the artifact is present

in a variant. In Listing 1, the presence condition of Line 5 is Ring
and the presence condition of Line 12 is DoubleLink ∧ Ring. Both
presence conditions may be more complex if the entire prepend
method would be surrounded with further annotations. A configu-

ration assigns truth values to each feature and serves to derive a

software variant by including all artifacts whose presence condition

is satisfied by the configuration, and excluding all other artifacts.

For example, selecting Ring and deselecting DoubleLink includes

the entire code except for Lines 10 and 12 of Listing 1. A software

system implementing variability in this way is referred to as a

software product line [6, 18]. In a software product line, a feature

model [8, 30] may additionally restrict the set of valid variants, for

example, to enforce dependencies or exclusion criteria between

features [8].

In this paper, we focus on static variability as realized with con-

ditional compilation. In a variant, no variability annotations remain

and thus implementation artifacts (e.g., source code) cannot inter-

act with variability information. Hence, variability annotations are

usually unaware of the syntax or semantics of the implementation

artifacts and vice versa. For instance, the C-preprocessor consid-

ers the underlying source code as plain text and is unaware of

the source code’s operational semantics. Conversely, when a final

C/C++ program is compiled or run, no C-preprocessor annotations

exist anymore because they were already resolved.

1 2 3 Ring

5 6

8 DoubleLink

10 Ring

12

15 16

r

Figure 1: Variation Tree of Listing 1.

1 2 3 Ring

5 6 8

DoubleLink

11 12 13 14 Ring 2

16

19 20

r

Figure 2: Variation Diff of Listing 2.

To express the variability in a file, we use variation trees [14]

– a generic tree in which nodes reflect variability annotations or

domain artifacts. As an example, Figure 1 represents Listing 1 as a

variation tree. A mapping node (blue border) represents a variabil-

ity annotation whereas an artifact node (black border) represents

domain artifacts (i.e., lines of code in this example). A synthetic

root node r groups annotated code at the file level. Labels of artifact
nodes state the respective line number. As for preprocessor annota-

tions, a mapping node maps all nodes in its subtree to a formula.

Thus, variation trees reflect the nesting structure established by an-

notations. Note that #endifs are not part of the tree as they declare

the end of an annotation’s scope only. While this example shows a

variation tree for a C preprocessor program, variation trees do not

require a specific macro language. Hence, variation are generic and

can represent different annotation languages [14].

Formally, a variation tree is a labeled, typed graph (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙)
with nodes 𝑉 , edges 𝐸 ⊂ 𝑉 × 𝑉 , root 𝑟 ∈ 𝑉 , typing 𝜏 : 𝑉 →
{artifact, mapping, else}, and label function 𝑙 [14]. The label 𝑙

maps each node 𝑣 ∈ 𝑉 , onto a domain artifact iff 𝜏 (𝑣) = artifact, a
propositional formula over the set of features iff 𝜏 (𝑣) = mapping, or
nothing iff 𝜏 (𝑣) = else. An else node may occur below a mapping
node only, and a node cannot have more than one else child node.

The root is defined to be neutral: 𝜏 (𝑟 ) = mapping and 𝑙 (𝑟 ) = true.
Let 𝑝 (𝑇, 𝑣) denote the parent node of a node 𝑟 ≠ 𝑣 ∈ 𝑉 in the tree

𝑇 . Let T denote the set of all variation trees.

The presence condition PC(𝑇, 𝑣) of a node 𝑣 ∈ 𝑉 in a variation

tree 𝑇 = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙) can be computed as follows [14]:
2

2
This formula is slightly adapted [14] in that it (1) inlines the auxiliary definition of

feature mappings and (2) takes the variation tree 𝑇 as additional argument. This is

required for obtaining the parent 𝑝 (𝑇, 𝑣) of a node 𝑣 because only 𝑇 contains the

necessary information about edges.



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr, S. Krieter, C. Tinnes, T. Kehrer, T. Thüm

PC(𝑇, 𝑣) B


PC(𝑇,𝑤), 𝜏 (𝑣) = artifact,

𝑙 (𝑣) ∧PC(𝑇,𝑤), 𝜏 (𝑣) = mapping, 𝑣 ≠ 𝑟,

¬𝑙 (𝑤)∧PC(𝑇, 𝑝 (𝑇,𝑤)), 𝜏 (𝑣) = else,

true, 𝑣 = 𝑟

where𝑤 B 𝑝 (𝑇, 𝑣)
The presence condition of an artifact node is given by the presence

condition of its enclosing annotation. A non-root mapping node

combines its own formula 𝑙 (𝑣) with any outer presence condition

PC(𝑇,𝑤). The presence condition of an else node is given by the

negation of its correspondingmapping node (which is located above

the else in the variation tree) as well as any outer annotations.

2.3 Background on Edits to Software Variability
To model views on edits to variability, we require a model that can

describe edits to variability. Moreover, it should be general enough

to capture any variability in the sense described above, and not

just a single concrete mechanism such as the C preprocessor. To

this end, we use variation diffs, a sound and complete model for

edits to variability [14]. Variation diffs are sound which means that

any variation diff describes an edit to a variational system, and

complete which means that any change to a variational system can

be expressed as a variation diff. Variation diffs express edits as a

difference between two variation trees [14].

Figure 2 shows the variation diff corresponding to Alice’s patch

of Listing 2. Node types and labels are depicted similarly as before

for variation trees but additionally, nodes and edges are colored:

Gray nodes and black edges are unchanged, green nodes and edges

are inserted, and orange, dotted nodes and edges are deleted.

Formally, a variation diff is a graph 𝐷 = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙,Δ) with
nodes𝑉 , edges 𝐸, root 𝑟 , typing 𝜏 , and labeling 𝑙 as defined for vari-

ation trees [14]. Additionally, the coloring Δ : 𝑉 ∪ 𝐸 → P({b, a})
denotes the set of times (or revisions) at which a node or edge exists,

where P denotes the power set. The values b and a reference the

times before or after the edit, respectively.3

In Figure 2, green nodes and edges are inserted, thus, they exist

only after the edit (i.e., Δ(𝑥) = {a}). Orange nodes and edges

are deleted and exist only before the edit (i.e., Δ(𝑥) = {b}). Gray
nodes and black edges are unchanged and exist at all times (i.e.,

Δ(𝑥) = {b, a}).
The semantics of a variation diff 𝐷 = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙,Δ) is given by

the corresponding variation trees 𝑇
b
before and 𝑇a after the edit,

where 𝑇
b
= project(𝐷, b) and 𝑇a = project(𝐷, a) with project [14]

being defined as:

project(𝐷, 𝑡) B ({ 𝑣 ∈ 𝑉 | 𝑡 ∈ Δ(𝑣)},
{ 𝑒 ∈ 𝐸 | 𝑡 ∈ Δ(𝑒)},
𝑟 , 𝜏, 𝑙).

(1)

As an example, Figure 1 is the projection of Figure 2 before the edit

(i.e., Figure 1 = project(Figure 2, b)).
3
We adapted the definition of the coloring Δ from its original definition [14]. Originally,

the coloring denoted the type of change (i.e., if a node or edge was inserted +, deleted
–, or unchanged •). Yet in fact, change types are mere names for times of existence

given by the correspondence + = {a}, deleted – = {b}, or unchanged • = {b, a}. Our
adapted definition leads to simpler algorithms and proofs.

3 VIEWS ON VARIATIONAL SYSTEMS
The goal of this paper is to define views on edits to variational soft-

ware. The key observation is that views on edits can be described

in terms of views on the state (i.e., a single revision) of a variational

software system, as we will elaborate in Section 5. In this section,

we cover views on variational systems first.

The idea of a view is to act as a filter on relevant parts of a system.

For instance, a piece of source code may be deemed relevant if it

implements a certain feature. Developers decide which parts of the

code they consider relevant. We model this decision on relevance
as a binary predicate

𝜌 : T ×𝑉 → {⊤,⊥} (2)

over the nodes 𝑉 in a given variation tree 𝑇 = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙) ∈ T
where ⊤ and ⊥ denote the Boolean values true and false, respec-
tively. For a given node 𝑣 ∈ 𝑉 of the given tree 𝑇 , the relevance

𝜌 (𝑇, 𝑣) decides whether 𝑣 is kept in a view on 𝑇 . Besides nodes,

relevance predicates may have to inspect a node’s location or neigh-

borhood because of which also the tree𝑇 serves as input.We discuss

useful implementations of relevance predicates 𝜌 later in Section 4.

To obtain a view of the variation tree 𝑇 , we ought to keep only

those nodes that are deemed relevant by a relevance 𝜌 . Yet, remov-

ing an arbitrary subset of nodes may destroy the variation tree,

potentially leaving it in a disconnected state, which in turn would

not correspond to a meaningful variational system anymore. To

guarantee that all relevant nodes are part of the view and that the

view is a variation tree, all relevant nodes must be connected to

the rest of the tree. Hence, in a view we must include each relevant

node 𝑣 as well as all their ancestors. We therefore introduce the

function 𝑝+ that determines the transitive closure over the parents

𝑝 , including the original node 𝑣 :

𝑝+ (𝑇, 𝑣) B
{
{𝑣}, 𝑣 = 𝑟,

{𝑣} ∪ 𝑝+ (𝑇, 𝑝 (𝑇, 𝑣)), otherwise.

Then, the set of nodes kept in the view on a variation tree 𝑇 =

(𝑉 , 𝐸, 𝑟, 𝜏, 𝑙) consists of the ancestors 𝑝+ (𝑇, 𝑣) of each relevant node

𝑣 ∈ 𝑉 with 𝜌 (𝑇, 𝑣):

viewnodes(𝑇, 𝜌) B
⋃

𝑣∈𝑉 , 𝜌 (𝑇,𝑣)
𝑝+ (𝑇, 𝑣). (3)

The function viewnodes essentially collects all nodes in paths from

a relevant node to the root (including both the relevant node 𝑣 ∈ 𝑉

with 𝜌 (𝑇, 𝑣) itself and the root in the ancestors set 𝑝+ (𝑇, 𝑣)).
Finally, we can define the view on a variation tree𝑇 = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙)

as a variation tree that contains exactly those nodes viewnodes(𝑇, 𝜌)
that are relevant due to 𝜌 or required for the tree structure:

viewtree (𝑇, 𝜌) B (𝑉 ′, 𝐸 ′, 𝑟 , 𝜏, 𝑙)
where 𝑉 ′ B viewnodes(𝑇, 𝜌),

𝐸 ′ B 𝐸 ∩ (𝑉 ′ ×𝑉 ′).
(4)

An edge can only be part of a view if both its nodes remain in the

view. We thus restrict the set of edges 𝐸 accordingly.

In summary, we reformulated and generalized views for the state

(i.e., single revisions) of a variational system to variation trees and

arbitrary relevance predicates.



Views on Edits to Variational Software SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

1 2 3 Ring

5 6

8 15 16

r

Figure 3: = viewtree (Figure 1, configure(Ring,¬(DoubleLink
∧ Ring)))
4 INTERESTING VIEWS AND EXAMPLES
So far, we defined views on variational software at an abstract
level: A user may decide which elements are relevant through

the binary relevance 𝜌 . Yet, we have not discussed whether it is

realistic that users can indeed define such a relevance, and for which

purposes. In this section, we present three types of views in terms of

generators for relevance predicates: partial configurations, as used

in the literature, feature traces, and artifact search. We demonstrate

that each of these relevance operators represents typical activities

when developing variational software.

4.1 Partial Configuration
The standard type of view on a variational system, is a view onto a

variant or a certain subset of variants [23, 77, 85], for example all

variants without a certain feature. Views of this type are the result

of the ordinary configuration process of variational systems (i.e.,

the common semantics of variability). Given a partial configuration,

which selects or deselects some or all of the features of the varia-

tional system, all artifacts whose presence condition contradicts

that configuration are removed [85].

Given a partial configuration as a propositional formula 𝑐 and a

feature model as a propositional formula𝑚, the relevance is given

by 𝜌 = configure(𝑐,𝑚), where

configure(𝑐,𝑚) B _(𝑇, 𝑣) � SAT(𝑐 ∧𝑚 ∧ PC(𝑇, 𝑣)) . (5)

We use _-notation to emphasize that configure is meant to be used

as a higher-order function to serve as a generator for relevance

predicates.
4
In configure, SAT denotes a standard satisfiability check

on a propositional formula, using a satisfiability solver. The satisfi-

ability check tests whether at least one complete configuration (i.e.,

assignment of all features to true or false) exists that (1) matches

the partial configuration 𝑐 (i.e., every selection or deselection in 𝑐 is

also made in the complete configuration), (2) is valid in terms of the

feature model𝑚, and (3) includes the node 𝑣 with presence condi-

tion PC(𝑇, 𝑣). Intuitively, configure tests whether at least one valid
variant exists that contains node 𝑣 under the partial configuration

𝑐 . If a feature model is not available,𝑚 can be set to true, which
means that there are no constraints among features. The node 𝑣

is not restricted to artifacts; also annotations (i.e., mapping nodes)
may be removed from the view.

As an example, Figure 3 is a view on the variation tree shown in

Figure 1 asking for all variants that select at least feature Ring (i.e.,

the partial configuration 𝑐 is a propositional formula that is only the

literal Ring). Assume that doubly-linked rings are forbidden which

4
Partially applying functions like this is referred to as currying [76]. To compute a view

on a variation tree𝑇 , we write viewtree (𝑇, configure(𝑐,𝑚)) because configure(𝑐,𝑚)
returns a function which can then be plugged into viewtree .

r DoubleLink
10

Ring 12

Figure 4: = viewtree (Figure 1, trace(DoubleLink))
means that the feature model is a formula𝑚 = ¬(DoubleLink ∧
Ring) ensuring that features DoubleLink and Ring are alternative.

Thus, the relevance in this example is configure(Ring,¬(DoubleLink
∧ Ring)). Since feature Ring is selected, feature DoubleLink will
be deselected due to the feature model𝑚. The resulting view thus

contains all code except for feature DoubleLink.

4.2 Feature Traces
A key concern of variability mechanisms and software product lines

is the traceability of features [12]. It is crucial to find locations of

interest in a software system reliably and exhaustively for maintain-

ing and comprehending a software system [74, 83]. In fact, tracing

features or requirements to their implementation is essential to all

stakeholders of software development and one of the most common

activities of developers [11, 65, 74, 83, 86].

Using a dedicated relevance 𝜌 , we can pinpoint exactly those

locations in the software that are affected by a certain feature 𝑓 (as-

suming locations of features are explicit as in variational software):

trace(𝑓 ) B _(𝑇, 𝑣) � 𝑓 ∈ vars(PC(𝑇, 𝑣)). (6)

where vars(𝜙) denotes the set of all variables occurring in a for-

mula 𝜙 . A relevance trace(𝑓 ) for a feature 𝑓 is a syntactical search

that selects a node if and only if its presence condition is affected

by a certain feature 𝑓 (i.e., contains that feature as a variable). A

view viewtree (𝑇, trace(𝑓 )) on a variation tree 𝑇 thus shows exactly

the part of the tree that is influenced by either the selection or

deselection of feature 𝑓 .5

As an example, Figure 4 is a view on the variation tree shown

in Figure 1 (i.e., Figure 4 = viewtree (Figure 1, trace(DoubleLink))).
This view traces the feature DoubleLink, and thus only the paths

from the root to the implementation of DoubleLink remain.

Besides syntactical feature tracing as above, developers may

be interested in semantic tracing. With the relevance trace⊇ (𝑐),
developers can trace exactly those artifacts that require the selection

or deselection of certain features, given as a partial configuration 𝑐 :

trace⊇ (𝑐) B _(𝑇, 𝑣) � (PC(𝑇, 𝑣) |= 𝑐),
where |= denotes a tautology check (i.e., for all assignments under

which PC(𝑇, 𝑣) evaluates to true also 𝑐 has to evaluate to true). A
relevance trace⊇ (𝑐) includes exactly those nodes in the view that re-

quire the configuration 𝑐 to be satisfied for them to appear in a vari-

ant. For example, a node 𝑣 with presence condition PC(𝑇, 𝑣) = 𝐴∧𝐵
would be included in the views described by trace⊇ (𝐴), trace⊇ (𝐵),
and trace⊇ (𝐴 ∧ 𝐵) but not in trace⊇ (¬𝐴) or trace⊇ (𝑋 ) for an an-

other feature 𝑋 . The name trace⊇ denotes that the selections and

deselections in the configuration 𝑐 in fact have to be a subset of

the selections and deselections required by the presence condition.

When flipping the tautology to

trace⊆ (𝑐) B _(𝑇, 𝑣) � (𝑐 |= PC(𝑇, 𝑣)),
5
Except when 𝑓 is redundant in the formula but then it is still present in the annotation

and thus shown in the view.



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr, S. Krieter, C. Tinnes, T. Kehrer, T. Thüm

the resulting view contains exactly the nodes that are selected by

the partial configuration 𝑐 (i.e., 𝑐 is is complete for PC(𝑇, 𝑣)). Thus a
node contained in a view described by trace⊆ (𝑐) is fully configured.

The difference between partial configuration and semantic fea-

ture traces is that partial configuration yields views on variants or

subsets of variants while feature traces yield views on individual fea-

tures or feature interactions. Nodes, whose inclusion or exclusion is

undecided by a partial configuration, survive in a configuration pro-

cess but not in feature traces. For instance, a node 𝑣 with presence

condition 𝐴 ∧ 𝐵 is kept by configure(𝐶, true) because selecting an
unrelated feature 𝐶 does not decide the appearance of 𝑣 . Contrary,

trace⊇ (𝐶) and trace⊆ (𝐶) hide 𝑣 exactly because 𝑣 is unrelated.

4.3 Artifact Search
Another interesting view for developers is the search for certain

artifacts, similar to feature traces but for artifacts. For instance

in C-preprocessor-based product lines, annotations might span

the entire document or even multiple files. Using the following

relevance generator, developers may inspect only the annotations

to certain artifacts 𝑎 that might be buried in a large file or system:

search(𝑎) B _(𝑇, 𝑣) � (𝜏 (𝑣) = artifact ∧ 𝑎 = 𝑙 (𝑣)). (7)

A relevance search(𝑎) deems only those nodes relevant that match

the search artifact 𝑎. This kind of view embodies a search algo-

rithm that finds all locations of a certain source code artifact (up to

exact equality). For example, a view of the code in Listing 1 with

the relevance search(last = head;) yields a variation tree that

solely contains the root, the annotation Ring in Line 4, and below

that annotation, Line 6 which exactly contains the search string.

Weakening the required equality in the definition of search to look

for sub-expressions or similar artifacts may enhance the search

capabilities. Thus, the views with a generalized relevance are as

general as to also work as a search for implementation artifacts.

In summary, we demonstrated the flexibility of abstracting over

relevance predicates 𝜌 to serve typical developer activities when

developing variational software. Next, we proceed to the main goal

of this paper, views on edits.

5 VIEWS ON EDITS TO VARIABILITY
We now define requirements and operators for describing and gen-

erating views on edits to variational software. The key observation

is that views on edits can be described in terms of views on vari-

ational systems, described in Section 3. We start by formalizing a

correctness criterion that defines what it means to be a view on

an edit. We then show that our correctness criterion gives rise to

a simple and elegant but potentially inefficient way to generate

views on edits. Finally, we design a run-time optimized generation

of views and discuss possible implementations.

5.1 Correctness Criterion
Before we can construct views on edits to variability, we have to

identify the expected behavior of such a view. Recall a key purpose

of views on variational systems, formalized in Section 3 and in work

on projectional editing [85]: Editing a variational system can be

simplified by first creating a view on the system via a relevance

𝜌 , then editing said view, to finally apply the edit to the complex

𝑇
b

𝑇a

𝑇 ′
b

𝑇 ′
a

𝐷 𝐷 ′

viewtree (𝑇b, 𝜌)

viewtree (𝑇a, 𝜌)

𝑣𝑖𝑒𝑤diff (𝐷, 𝜌)
project(𝐷, b)

project(𝐷, a)

project(𝐷 ′, b)

project(𝐷 ′, a)

diff diff

Figure 5: Commuting diagram for the correctness criterion
for views on edits to variability as defined in Definition 5.1.

underlying system by automated lifting. While developers perform

an edit on a view of the system, the actual (automatically computed)

edit is more complex. In this sense, the developer’s edit thus can

be seen as a view on the actual complex edit. Moreover, a view
on the edit with the same relevance 𝜌 should be the edit made by

the developer. Otherwise, the view would be inconsistent with the

developer’s edit, and may even be different each time a view is

created. Thus, a view on an edit must be equivalent to an edit to a
view of the system:

Definition 5.1 (Correctness). A view function viewdiff for edits to

variability is correct if and only if

viewdiff (diff(𝑇b,𝑇a), 𝜌)
≡ diff(viewtree (𝑇b, 𝜌), viewtree (𝑇a, 𝜌))

for any two variation trees𝑇
b
,𝑇a and relevance 𝜌 : T ×𝑉 → {⊤,⊥},

where ≡ denotes semantic equivalence (cf. Definition 5.3), and diff
is a differencing function according to the following definition.

Definition 5.2 (Difference). For any two variation trees 𝑇
b
,𝑇a, a

function diff : T ×T → D is a differencing function iff it is inverse

to projections for all times 𝑡 ∈ {b, a}:(
project(diff(𝑇

b
,𝑇a), b) = 𝑇

b

)
and

(
project(diff(𝑇

b
,𝑇a), a) = 𝑇a

)
.

The correctness criterion (Definition 5.1) ensures that a view on

that edit (left hand side) is the same as an edit to a view (right hand

side). Figure 5 visualizes the correctness criterion as a commuting di-

agram. The goal of the diagram is to reach the view𝐷 ′
(right center)

on the difference between two variation trees𝑇
b
and𝑇a (left corners)

with respect to a relevance 𝜌 . Starting from the two trees 𝑇
b
,𝑇a,

there are two ways to compute 𝐷 ′
: First, we can compute views

𝑇 ′
b
= viewtree (𝑇b, 𝜌) and𝑇 ′

a
= viewtree (𝑇a, 𝜌) (right corners) on each

tree separately and then create a variation diff 𝐷 ′ = diff(𝑇 ′
b
, 𝑇 ′

a
)

from these tree views. Second, we can use a dedicated viewing

function viewdiff that creates the view 𝐷 ′ = viewdiff (𝐷, 𝜌) from the

diff 𝐷 = diff(𝑇
b
,𝑇a) (center). The correctness criterion states that

the viewing function viewdiff is correct if and only if both paths

commute (i.e., always yield semantically equivalent result).

For the correctness criterion, it is important to not enforce strict
equality = because expressing edits is usually ambiguous [14] and

subject to research on advanced matching heuristics [21, 35, 60]. For

example, in Listing 2, Alice deleted an #endif in Line 7 and inserted

it in Line 9. Alternatively, the diff could also show the #endif as

being unchanged and Line 8 (last->suc = newHead;) as being
removed and reinserted within the scope of feature Ring. Even



Views on Edits to Variational Software SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

more drastically, considering the whole old version of the prepend
method as deleted and its new version as being inserted would

still describe an equivalent edit. Thus, syntactically different diffs

can represent equivalent edits in the sense that both edits produce

the same result for the same input. Hence, we require semantic
equivalence ≡ in our correctness criterion in Definition 5.1:

Definition 5.3 (Semantic Equivalence). Two variation diffs 𝐷1

and 𝐷2 are semantically equivalent, written 𝐷1 ≡ 𝐷2, iff their

projections are equal, ∀𝑡 ∈ {b, a} : project(𝐷1, 𝑡) = project(𝐷2, 𝑡).
Equality of projections is defined by equality of variation trees:

Definition 5.4 (Equality of Variation Trees). Two variation trees

𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝑟𝑖 , 𝜏𝑖 , 𝑙𝑖 ), 𝑖 ∈ {1, 2} are equal,𝑇1 = 𝑇2, iff𝑉1 = 𝑉2,

𝐸1 = 𝐸2, 𝑟1 = 𝑟2, and types 𝜏𝑖 and labels 𝑙𝑖 are point-wise equal:

∀ 𝑣 ∈ 𝑉1 : (𝜏1 (𝑣) = 𝜏2 (𝑣)) ∧ (𝑙1 (𝑣) = 𝑙2 (𝑣)).
As expected, equality of two variation diffs implies their semantic

equivalence:

Definition 5.5 (Equality of Variation Diffs). Two variation diffs

𝐷𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝑟𝑖 , 𝜏𝑖 , 𝑙𝑖 , Δ𝑖 ), 𝑖 ∈ {1, 2} are equal, 𝐷1 = 𝐷2,

iff (𝑉1, 𝐸1, 𝑟1, 𝜏1, 𝑙1) = (𝑉2, 𝐸2, 𝑟2, 𝜏2, 𝑙2) according to Defini-

tion 5.4, and the colorings are point-wise equal: ∀ 𝑥 ∈ 𝑉1 ∪ 𝐸1 :

Δ1 (𝑥) = Δ2 (𝑥).
Corollary 5.6. All variation diffs𝐷1, 𝐷2 that are equal𝐷1 = 𝐷2

are also semantically equivalent 𝐷1 ≡ 𝐷2.

5.2 Generating Views
Having identified the requirements to a view on edits to variability,

we now have to find a way to construct correct views of variation

diffs. In fact, the correctness criterion itself gives rise to a simple

but elegant definition:

viewnaive (𝐷, 𝜌) B diff(viewtree (project(𝐷, b), 𝜌),
viewtree (project(𝐷, a), 𝜌)).

(8)

This definition for a viewing function arises from rearranging the

terms in the correctness criterion. Consider again the commuting

diagram in Figure 5. Given a variation diff 𝐷 , we ought to compute

a view 𝐷 ′
on 𝐷 for a relevance 𝜌 in terms of a function viewdiff.

A simple way is to just walk the long way around the corners of

the diagram: First, obtain the states before 𝑇
b
= project(𝐷, b) and

after 𝑇a = project(𝐷, a) the edit by means of projection. Second,

create the views on these trees using viewtree. Third, compute the

difference of the result.

Theorem 5.7. viewnaive is correct (cf. Definition 5.1).

Proof. Let𝑇
b
,𝑇a be two variation trees and 𝜌 a relevance. Then

viewnaive (diff(𝑇b,𝑇a), 𝜌)
Eq. 8
= diff(viewtree (project(diff(𝑇b,𝑇a), b), 𝜌),

viewtree (project(diff(𝑇b,𝑇a), a), 𝜌))
Def. 5.2
= diff(viewtree (𝑇b, 𝜌),

viewtree (𝑇a, 𝜌)).
By Corollary 5.6 syntactic equality implies semantic equivalence.

Hence, all terms above are also semantically equivalent, and thus

viewnaive correct. □

1 2 3 8 DoubleLink

11 12 13 14

19 20

r

Figure 6: = viewnaive (Figure 2, configure(¬Ring, true))
Figure 6 shows a view on the edit in Figure 2 made by Alice

in our motivating example (Section 2.1). Figure 6 is the view of

Charlotte who required the changes by Alice as a patch without the

feature Ring. Listing 4 shows the corresponding concrete syntax

but line numbers in Figure 6 are according to the original edit.

5.3 Optimized View Generation
An implementation of viewnaive does not seem to be efficient, hence

its name. It requires two projections, two views, and, crucially,

recomputing a diff despite already having a diff 𝐷 as input. Given

that a view only removes but never adds, we can remember whether

nodes were unchanged, inserted, or deleted, instead of forgetting

and recomputing this knowledge as viewnaive does. We thus develop

an optimized view function that avoids recomputing a diff.

The key idea for this optimization is to reuse the functions we

introduced in Section 3 for views on variation trees, but to account

for times 𝑡 ∈ {b, a}. In particular, we now track when a node is

relevant instead of tracking just whether it is relevant.
To define a view on a variation diff, we have to define (1) which

nodes should be in the view, (2) which edges should be in the view,

and (3) the coloring Δ : 𝑉 ∪ 𝐸 → P({b, a}) of nodes and edges in

the view. We can compute the set of nodes and edges for a view in

a similar fashion as for variation trees in Section 3. Yet, we cannot

just keep the coloring as is because nodes or edges might not be

relevant at all times they exist. This happened in our motivating

example in Section 2.1 where Charlotte required a view on the edit

shown in Listing 2 without the feature Ring. In the resulting view in

Listing 4, a formerly unchanged line had to appear as deleted (Line

4 in Listing 4) because the line was moved from a relevant presence

condition true to another irrelevant annotation Ring, that is hidden
in the view defined by the relevance 𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑒 (¬Ring, true). This
special treatment allowed Charlotte to apply the view as a patch to

an older version of the software without the feature Ring.
To define the set of nodes and the coloring in a view on an edit,

we first introduce a function which collects the times at which a

node 𝑣 from a variation diff 𝐷 is relevant in a view:

tor(𝐷, 𝑣, 𝜌) B {𝑡 ∈ Δ(𝑣) | 𝑣 ∈ viewnodes(project(𝐷, 𝑡), 𝜌)} (9)

where tor is an abbreviation for times of relevancy. The times of

relevancy tor(𝐷, 𝑣, 𝜌) of a node 𝑣 in a diff 𝐷 , are all times at which

the node exists (i.e., 𝑡 ∈ Δ(𝑣)) and at which it is contained in a view

on the projection at that time 𝑡 (i.e., 𝑣 ∈ viewnodes(project(𝐷, 𝑡), 𝜌)).
The viewnodes function, defined in Equation 3, determines all nodes

that should be part of a view for a variation tree. We can reuse that

function to check whether a node is relevant in a projection at a

certain time 𝑡 . To navigate the subtree and to evaluate the relevance



SPLC ’23, August 28-September 1, 2023, Tokyo, Japan P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr, S. Krieter, C. Tinnes, T. Kehrer, T. Thüm

𝜌 at a certain time 𝑡 , we use the projection project(𝐷, 𝑡). We dis-

cuss the potential impact of this projection on implementations in

Section 5.4.

Knowing at which times a node is relevant for a view on a

variation diff 𝐷 = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙,Δ), we can conclude that all nodes

𝑣 ∈ 𝑉 that are relevant at least once must be in the view:

𝑣𝑖𝑒𝑤𝑛𝑜𝑑𝑒𝑠 ′(𝐷, 𝜌) B {𝑣 ∈ 𝑉 | tor(𝐷, 𝑣, 𝜌) ≠ ∅},
where 𝑣𝑖𝑒𝑤𝑛𝑜𝑑𝑒𝑠 ′(𝐷, 𝜌) is the set of all nodes in the view on the

diff 𝐷 described by the relevance 𝜌 .

Finally, we can define our optimized operator for views on edits

to variability. A view described by a relevance 𝜌 on a variation diff

𝐷 = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙,Δ) is given by:

viewsmart (𝐷, 𝜌) B (𝑉 ′, 𝐸 ′, 𝑟 , 𝜏, 𝑙,Δ′)
where 𝑉 ′ B 𝑣𝑖𝑒𝑤𝑛𝑜𝑑𝑒𝑠 ′(𝐷, 𝜌),

𝐸 ′ B 𝐸 ∩ (𝑉 ′ ×𝑉 ′),
Δ′(𝑣) B tor(𝐷, 𝑣, 𝜌), if 𝑣 ∈ 𝑉 ′,

Δ′(𝑒) B Δ′(𝑣) ∩ Δ′(𝑤), if 𝑒 = (𝑣,𝑤) ∈ 𝐸 ′.

(10)

This definition of views on edits is similar to the definition for

views on trees in Equation 4 but extended by the coloring Δ. The
set of nodes in the view is given by the function 𝑣𝑖𝑒𝑤𝑛𝑜𝑑𝑒𝑠 ′ defined
earlier. For edges, we restrict all edges to be between nodes within

the view, as we did for views on trees in Equation 4. Moreover, we

have to define at which times a node or edge 𝑥 ∈ 𝑉 ∪ 𝐸 is present

in the view in terms of a coloring Δ : 𝑉 ∪ 𝐸 → P({b, a}). For
nodes, we have already defined these times in terms of the times

of relevancy tor(𝐷, 𝑣, 𝜌) that denotes the set of all times at which a

node 𝑣 should be within the view. An edge can only exist at times at

which both its nodes exist. For instance, an edge 𝑒 = (𝑣,𝑤) where
𝑣 is relevant only before the edit (Δ′(𝑣) = tor(𝐷, 𝑣, 𝜌) = {b}) but
𝑤 is always relevant (Δ′(𝑣) = tor(𝐷,𝑤, 𝜌) = {b, a}), can only exist

before the edit since 𝑣 does not exist in the view after the edit (thus,

tor(𝐷, 𝑒, 𝜌) = {b}).

Theorem 5.8. viewsmart is correct (cf. Definition 5.1).

Proof Sketch. Let 𝑇
b
,𝑇a be two variation trees and 𝜌 a rele-

vance. Let 𝐷 = diff(𝑇
b
,𝑇a). Our goal is to prove

viewsmart (𝐷, 𝜌) ≡ diff(viewtree (𝑇b, 𝜌), viewtree (𝑇a, 𝜌))
which by definition of semantic equivalence ≡ (Definition 5.3)

means that for all times 𝑡 ∈ {b, a}, the following has to hold:

project(viewsmart (𝐷, 𝜌), 𝑡)
= project(diff(viewtree (𝑇b, 𝜌), viewtree (𝑇a, 𝜌)), 𝑡)

The proof works by case analysis on the time 𝑡 and showing that

both sides of the equation simplify to the same term. The full proof

is in our appendix [1]. □

5.4 Implementation
Compared to the naive view generation viewnaive, defined in Equa-

tion 8, our optimized generation viewsmart does not require dif-

ferencing and the separate computation of two views. Yet due to

Equation 9, we still require the computation of both projections

project(𝐷, 𝑡) to determine the relevance of a node at a certain time

𝑡 ∈ {b, a}. This does not mean though that an implementation of

viewsmart does indeed require to create both projections. In the end,

the projection is required to (1) restrict the set of nodes to only

those nodes that exist at time 𝑡 , (2) compute the set of ancestors

𝑝+ (project(𝐷, 𝑡), 𝑣) at that time, and (3) evaluate relevance predi-

cates 𝜌 in the projection. All three tasks can be implemented with a

single graph traversal over the variation diff 𝐷 . Restricting the set

of nodes (1) can be done by checking the times of existence Δ(𝑣)
of a node during the traversal. Similarly, the set of ancestors (2) in

fact requires only to decide which parents to pick. The concrete

relevance predicates (3) highlighted in Section 4 require the tree,

and thus the projection, only to decide which parent to visit when

computing presence conditions (for partial configurations or fea-

ture traces), or might not use the tree information at all (for artifact

search). Thus, an implementation of viewsmart can easily be opti-

mized to avoid full projections and instead use only the required

information of parentship. For our formalization, we decided to use

projections though to better express the intent of our definitions

and to simplify proofs. In our implementation for the upcoming fea-

sibility study, we implemented viewsmart with two graph traversals:

One traversal to compute times of relevance, and another traversal

to create a copy of the subgraph that is the view.

Having defined views for edits to variability formally, we now

turn to investigating their feasibility and potential in practice in

the next section. Moreover, we are interested in finding whether

the optimized definition of views for edits viewsmart is indeed faster

than the naive view generation viewnaive.

6 FEASIBILITY STUDY
This section investigates the feasibility of generating views on edits

to variational software in practice as a proof of concept.We examine

whether the provided theoretical foundations of view generation

can be implemented, automated, and executed within reasonable

time on real-world edits. Feasibility in practice is a necessary pre-

requisite to study benefits for developers in the future as motivated

in Section 2.1. Moreover, it is yet unknown whether our optimized

view generation (Equation 10) indeed yields speedups compared to

the naive one (Equation 8). Thus, we conduct an empirical feasibility

study for answering the following two research questions:

RQ1 Is it feasible to generate views on edits to real-world software

that implements variability via conditional compilation?

RQ2 How does the performance of the naive view generation

compare to the optimized generation?

6.1 Experiment Setup
For our study, we generate views for each edit in the version history

of a given software product line. We employ DiffDetective [14], a
framework for analyzing patches and commits in the Git history of

variational software implemented with the C preprocessor.

We divide each commit in the git history’s default branch into

one patch per edited file. Thus, for each commit, we obtain a set of

text-based diffs, whichwe refer to as patches, each editing a different

file. We discard all patches that (1) insert, delete, or move an entire

file because views on these patches would actually correspond to

views on source code and not on edits, or (2) do not edit a source

code file (i.e., .h, .hpp, .c, or .cpp). We parse each remaining patch

into a variation diff. Thereby, we collapse subsequent lines of code



Views on Edits to Variational Software SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

below the same annotation and with the same type of edit (i.e.,

inserted, deleted, or unchanged) to a single node.

For each variation diff, we randomly generate one relevance

predicate per type introduced in Section 4:

Partial Configuration: We generate a relevance predicate that

hides at least one subtree in its view. Therefore, we collect

the presence conditions of all edited artifact nodes in the

variation diff (i.e., for all artifacts that are not classified as

Untouched [14]), for all times the node exists at. Then, we

negate each presence condition such that using it as a rele-

vance has the effect of hiding a subtree, and thus the view

has a visible effect. We pick one formula randomly that is

satisfiable (to not generate empty views). We then generate a

relevance predicate using configure without a feature model

(Equation 5) because feature models are unavailable for the

largest parts of our dataset’s histories.

Feature Traces: We collect all variable names occurring in anno-

tation nodes, pick one at random, and create a relevance

predicate via trace (Equation 6).

Artifact Search: We collect the lines of code within the diff, pick

one at random, and plug it into search (Equation 7).

If a relevance predicate cannot be generated (e.g., because there is

no satisfiable negated presence condition), we exclude that type of

relevance predicate for the current variation diff. For each generated

relevance, we run the implementations for our view algorithms

viewnaive and viewsmart and measure their runtime.

For satisfiability solving, DiffDetective uses Sat4j [43], and addi-

tionally the Tseytin transformation [41, 81] for larger queries. We

extended DiffDetective to decide satisfiability of small formulas

(#literals<15) based on a transformation to disjunctive normal form.

The study runs on an Ubuntu 20.04.3 LTS 64-bit system and an

Intel® Xeon® E5-260v3 CPU with 2.40Ghz. We process parts of the

history in parallel on the system’s 32 threads. To avoid impact of

other processes, the machine did not execute other tasks in parallel.

Our replication package is available online [2].

6.2 Datasets
We run our experiment on each repository in the dataset collected

by Liebig et al. [46] and extended by us [14]. The dataset consists of

44 open-source software repositories, covering about 30 different

domains. Each software implements variability with the C prepro-

cessor. Among others, the dataset includes widely studied subjects

such as the Linux Kernel [38, 40, 52, 62, 77], Busybox [28, 38, 47, 63],

and Marlin [55, 77]. For reproducibility, we use the dedicated forks

provided by the DiffDetective replication package that mirror each

repository in the state they were at February 2, 2022 [13].

6.3 Results and Discussion
Within about three hours, we generated almost 10 million views

for about 5 million processed patches from 1,710,725 commits, in

total. 8,391 patches could not be parsed due to syntactically invalid

preprocessor directives (e.g., an #endif without #if). 452 patches

could not be parsed due to ill-formed text-based diffs.

Table 1 presents the obtained results. It describes per view algo-

rithm (columns viewnaive and viewsmart), how many views of each

type (first column) could be generated within a certain time slot

Table 1: Amount of views that could be generated within a
given time slot, grouped by view type.

Type run time viewnaive viewsmart
is ≤ # % # %

Partial 1ms 1,121,853 70.75 1,434,649 90.48

Configuration 10ms 358,858 22.63 137,297 8.66

1 s 103,416 6.52 12,649 0.80

1min 1,456 0.09 1,001 0.06

10min 90 0.01 77 < 0.01

1 h 1 < 0.01 1 < 0.01

Artifact 1ms 3,812,454 77.39 4,685,940 95.13

Search 10ms 1,024,747 20.80 226,123 4.59

1 s 88,836 1.80 13,985 0.28

1min 11 < 0.01 0 0

Feature 1ms 2,910,342 86.60 3,290,418 97.91

Traces 10ms 423,344 12.60 67,631 2.01

1 s 26,906 0.80 2,628 0.08

1min 73 < 0.01 0 0

10min 12 < 0.01 0 0

(second column), both in absolute (#) and relative numbers (%). The

value for a time slot denotes that a view generation required at most

this amount of time but more than the previous time slot (or 0 s in

case of the first slot). For example, the time slot of 10ms contains

all view generations that required at most 10ms but more than 1ms

(the previous time slot).

We find that generating views required less than a millisecond

for 70.75%, 77.39%, and 86.6% of the views per type with the naive

algorithm, and more than 90% of the views with the optimized al-

gorithm. The median run time is 1ms for viewnaive and a value less

than 1ms for viewsmart. The reported value is 0ms because the time

measurement’s resolution is limited to full milliseconds. The three

views that took the longest for both algorithms were partial con-

figurations for src/HAL/HAL_DUE/usb/uotghs_device_due.c in
commits 02bbc511, 99ecdf59, and c0e917ea from the Marlin reposi-

tory, which required about 9 – 10.6 minutes (the slowest one being

Row 6 in Table 1). This file contains about 67 annotations, including

two large formulas in disjunctive normal form that we suspect to

cause blowups in satisfiability solving upon partial configuration.

We suspect such outliers for larger changes to be reasonable. In

fact, about 99.9 % of views required a second or less.

RQ1 Generating views on edits to software product lines

based on conditional compilation is feasible in practice.

To determine the performance improvement of viewsmart over

viewnaive, we test whether there is a statistically significant differ-

ence in run times. The difference between the values of viewsmart
and viewnaive is non-normally distributed. Thus, we use the Wil-

coxon Signed-Rank Test with a level of significance of 𝛼 = 0.005.

In particular, for all but the first time slot of each group in Table 1

(i.e., 10ms, 1 s, etc.), we perform the test on each run time of the

optimized algorithm in that slot compared to the time the naive

algorithm required. We find that both distributions are significantly

different (i.e., for all time slots p-value < 10
−12 < 𝛼) and that the

mean value of the optimized algorithm is always lower than the

mean value of the naive algorithm (i.e., differences range from

https://github.com/MarlinFirmware/Marlin/commit/02bbc511#diff-fac3f74ee852e729b95201ffd9e2084b663b47d6d654ebca3f55d4a3d0655f2c
https://github.com/MarlinFirmware/Marlin/commit/99ecdf59#diff-fac3f74ee852e729b95201ffd9e2084b663b47d6d654ebca3f55d4a3d0655f2c
https://github.com/MarlinFirmware/Marlin/commit/c0e917ea#diff-fac3f74ee852e729b95201ffd9e2084b663b47d6d654ebca3f55d4a3d0655f2c


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr, S. Krieter, C. Tinnes, T. Kehrer, T. Thüm

0.6ms up to 985.6ms). For more complex instances (i.e., views that

required a second or longer), the naive generation was slower by a

factor of about 159, 1,612, and 37 on average for the view types par-

tial configuration, and feature traces, artifact search, respectively.

We hypothesize that the performance improvement mainly results

from avoiding the extra differencing step.

RQ2 On average, the optimized generation is faster to com-

pute for views for which the naive algorithm requires one

second or more.

6.4 Threats to Validity
By using DiffDetective and a similar experiment setup, our study

inherits the same threats to validity as present in our earlier edit

classification, which we discussed in detail [14].

The implementation of the naive algorithm (Section 5.2) depends

on the chosen diff operator which in turn influences our results.

We chose a line-based text diffing based on Myers algorithm, that

is also used for parsing in DiffDetective because it is comparably

fast in our experience. A detailed comparison of diffing algorithms

can be found elsewhere [20, 25, 60] and is out of scope here.

We did not consider feature models in our study which likely

yields faster runtimes. The majority of projects in our dataset do not

contain explicit feature models, and recovering a feature model is a

project-specific and complex task which constitutes its own area

of research [32, 66]. We chose our dataset for more realistic and

large-scale data, and consider investigating the impact of feature

models on view generation as potential future work.

7 RELATEDWORK
Related work to views on edits to variational software falls into

two categories. Variation control systems reduce the complexity of

editing variational systems via views on the system. Commit untan-

gling and slicing reduce commits to identify single characteristics.

7.1 Views to Variability
Variation control systems [3, 48, 50], such as ECCO [23, 49] and Su-

perMod [67], employ concepts of version control systems to reduce

the complexity of editing variational software. In both and similar

systems [5, 77], developers edit a view on the software, obtained

by checking out a (partially) configured variant, and committing

the changes against a partial configuration. The superimposition

of all variants is hidden from the user and is updated upon commit.

While variation control systems allow for navigating the version

history and to edit single views, they do not allow to perform views

on the changes themselves. Similarly, Kästner et al. support views

in the software product line editor CIDE [31, 34] both via partial

configuration and feature traces but describe views only informally

and do not consider views on edits. Feature revisions [59, 69] identify
changes made to a specific feature, but in contrast to our formaliza-

tion, are restricted to a single feature per view.

Walkingshaw and Ostermann formalized the workflow of vari-

ation control systems [85] based on the choice calculus, a formal

and minimal language for variability annotations [19, 84]. Thereby,

views on variability are formalized as a partial configuration upon

checkout (get). In this work, we generalized producing views on

variability to other types of views, including feature traces and

artifact search. The restriction to partial configurations is necessary

though to enable applying an edit to a view (i.e., a view on an edit, cf.

Section 5.1) to the underlying complex system (put) [85]. Extending
the whole workflow of variation control systems to the other types

of views also requires a specialized commit (put) operator for each
view type, which would be interesting future work.

7.2 Commit Untangling
Commit untangling, or commit slicing, splits commits that address

multiple concerns (e.g., a refactoring and a bug fix) into sets of

changes addressing a single concern each [15, 45, 58, 61, 73, 87].

Techniques for commit untangling can roughly be divided into two

categories [45], with a third category being currently established.

First, techniques that leverage ideas from mining software repos-

itories usually consider repository properties such as overlaps in

the change sets of commits [36, 37], package and file distances of

changes [27], artifact co-changes in the history [27], or code de-

pendencies [27, 39, 79]. Second, techniques based on static code

analyses detect source code relationships at varying levels of detail,

such as define-use chains [7], data flow and control flow [57, 61],

relational links between patches [73], or refactorings [75]. Third,

recent techniques [15, 45] combine static code analysis with ma-

chine learning to extract meaningful change representations and

to automatically separate change sets.

Both our views on edits and commit untangling aim to identify

changes to distinct concerns that were made in an edit to multiple

concerns at once. In commit untangling, these concerns align with

the source code. Our views on edits cover variational concerns such

as configuration or feature tracing (cf. Section 4). While commit

untangling operates on project metadata and the used programming

languages, our views operate on a meta-language that annotates

these programming languages. Thus, commit untangling and our

views serve orthogonal concerns and could be applied in parallel.

8 CONCLUSION
We developed the theoretical foundations for views on edits to

variational software, and observed that creating views on edits

can be reduced to creating usual views on single revisions of the

variational software. Based on this observation, we formulated

a correctness criterion that should be satisfied by any view. We

proposed two algorithms for view construction and proved their

correctness. First, a naive and simple algorithm directly emerged

from the correctness criterion and is suitable for use in proofs and

formal reasoning. Second, a runtime-optimized algorithm avoids

redundant computations. We empirically confirmed the feasibility

of generating views on edits to variational software by applying our

algorithms to the version histories of 44 open source and real-world

software product lines.

As we confirmed that generating views on edits to variational

software is feasible even in large projects, future work may evaluate

the practicality of views on edits for developers in subsequent exper-

iments, such as patch backporting, or dedicated user studies. Upon

view generation, also annotations may be simplified according to

the relevance predicate.



Views on Edits to Variational Software SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

ACKNOWLEDGMENTS
We thank Chico Sundermann and Lukas Bormann for helpful discus-

sions, and Tim Nolle for testing our replication package. This work

has been partially supported by the German Research Foundation

within the project VariantSync (TH 2387/1-1 and KE 2267/1-1).

REFERENCES
[1] 2023. Appendix. https://github.com/VariantSync/DiffDetective/raw/splc23-

views/appendix/appendix-splc23-views.pdf; The appendix is also part of our

replication package [2].

[2] 2023. Replication Package. https://github.com/VariantSync/DiffDetective/tree/

splc23-views/replication/splc23-views. https://doi.org/10.5281/zenodo.8027920

[3] Sofia Ananieva, Sandra Greiner, Timo Kehrer, Jacob Krüger, Thomas Kühn, Lukas

Linsbauer, Sten Grüner, Anne Koziolek, Henrik Lönn, S. Ramesh, and Ralf H.

Reussner. 2022. A Conceptual Model for Unifying Variability in Space and

Time: Rationale, Validation, and Illustrative Applications. Empirical Software
Engineering (EMSE) 27, 5 (2022), 101.

[4] Sofia Ananieva, Sandra Greiner, Jacob Krueger, Lukas Linsbauer, Sten Gruener,

Timo Kehrer, Thomas Kuehn, Christoph Seidl, and Ralf Reussner. 2022. Unified

Operations for Variability in Space and Time. In Proc. Int’l Working Conf. on
Variability Modelling of Software-Intensive Systems (VaMoS). ACM, Article 7,

10 pages.

[5] Sofia Ananieva, Thomas Kühn, and Ralf Reussner. 2022. Preserving Consistency

of Interrelated Models during View-Based Evolution of Variable Systems. In Proc.
Int’l Conf. on Generative Programming and Component Engineering (GPCE). ACM,

148–163.

[6] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[7] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. 2015. Helping

Developers Help Themselves: Automatic Decomposition of Code Review Change-

sets. In Proc. Int’l Conf. on Software Engineering (ICSE), Vol. 1. IEEE, 134–144.
[8] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In

Proc. Int’l Systems and Software Product Line Conf. (SPLC). Springer, 7–20.
[9] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,

Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a

Feature? A Qualitative Study of Features in Industrial Software Product Lines. In

Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 16–25.

[10] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej

Wasowski. 2010. Feature-to-Code Mapping in Two Large Product Lines. In Proc.
Int’l Systems and Software Product Line Conf. (SPLC), Vol. 6287. Springer, 498–499.

[11] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. 1993. The Concept

Assignment Problem in Program Understanding. In Proc. Int’l Conf. on Software
Engineering (ICSE). IEEE, 482–498.

[12] Paul Maximilian Bittner, Alexander Schultheiß, Thomas Thüm, Timo Kehrer,

Jeffrey M. Young, and Lukas Linsbauer. 2021. Feature Trace Recording. In Proc.
Europ. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE).
ACM, 1007–1020.

[13] Paul Maximilian Bittner, Christof Tinnes, Alexander Schultheiß, Sören Viegener,

Timo Kehrer, and Thomas Thüm. 2022. Appendix and Replication Package for
Article: Classifying Edits to Variability in Source Code.

[14] Paul Maximilian Bittner, Christof Tinnes, Alexander Schultheiß, Sören Viegener,

Timo Kehrer, and Thomas Thüm. 2022. Classifying Edits to Variability in Source

Code. In Proc. Europ. Software Engineering Conf./Foundations of Software Engi-
neering (ESEC/FSE). ACM, 196–208.

[15] Siyu Chen, Shengbin Xu, Yuan Yao, and Feng Xu. 2022. Untangling Composite

Commits by Attributed Graph Clustering. In Proceedings of the 13th Asia-Pacific
Symposium on Internetware. ACM, 117–126.

[16] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software

Configuration Management. ACM Computing Surveys (CSUR) 30, 2 (1998), 232–
282.

[17] Krzysztof Czarnecki and Michal Antkiewicz. 2005. Mapping Features to Models:

A Template Approach Based on Superimposed Variants. In Proc. Int’l Conf. on
Generative Programming and Component Engineering (GPCE). Springer, 422–437.

[18] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley.

[19] Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Represen-

tation for Software Variation. Trans. on Software Engineering and Methodology
(TOSEM) 21, 1, Article 6 (2011), 27 pages.

[20] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing. In Proc.
Int’l Conf. on Automated Software Engineering (ASE). 313–324.

[21] Yuanrui Fan, Xin Xia, David Lo, Ahmed E. Hassan, Yuan Wang, and Shanping

Li. 2021. A Differential Testing Approach for Evaluating Abstract Syntax Tree

Mapping Algorithms. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE,
1174–1185.

[22] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,

Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. 2013.

Do Background Colors Improve Program Comprehension in the #Ifdef Hell?

Empirical Software Engineering (EMSE) 18, 4 (2013), 699–745.
[23] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.

2015. The ECCO Tool: Extraction and Composition for Clone-and-Own. In Proc.
Int’l Conf. on Software Engineering (ICSE). IEEE, 665–668.

[24] Sandra Greiner and Bernhard Westfechtel. 2021. On Preserving Variability Con-

sistency in Multiple Models. In Proc. Int’l Working Conf. on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, Article 7, 10 pages.

[25] Masatomo Hashimoto and Akira Mori. 2008. Diff/TS: A Tool for Fine-Grained

Structural Change Analysis. In Proc.Working Conf. on Reverse Engineering (WCRE).
279–288.

[26] Florian Heidenreich, Jan Kopcsek, and Christian Wende. 2008. FeatureMapper:

Mapping Features to Models. In Companion Int’l Conf. on Software Engineering
(ICSEC). ACM, 943–944. Informal demonstration paper.

[27] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The Impact of Tangled Code

Changes on Defect Prediction Models. Empirical Software Engineering (EMSE) 21
(2016), 303–336.

[28] Tobias Heß, Chico Sundermann, and Thomas Thüm. 2021. On the Scalability

of Building Binary Decision Diagrams for Current Feature Models. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, 131–135.

[29] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich,

Martin Becker, and Sven Apel. 2016. Preprocessor-Based Variability in Open-

Source and Industrial Software Systems: An Empirical Study. Empirical Software
Engineering (EMSE) 21, 2 (2016), 449–482.

[30] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[31] Christian Kästner. 2010. Virtual Separation of Concerns: Toward Preprocessors 2.0.
Ph. D. Dissertation. University of Magdeburg.

[32] Christian Kästner. 2017. Differential Testing for Variational Analyses: Experience
from Developing KConfigReader. Technical Report arXiv:1706.09357. Cornell

University Library.

[33] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in

Software Product Lines. In Proc. Int’l Conf. on Software Engineering (ICSE). ACM,

311–320.

[34] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software

Product Line Variabilities in Source Code. In Proc. Int’l Workshop on Visualisation
in Software Product Line Engineering (ViSPLE). 303–313.

[35] Timo Kehrer, Udo Kelter, Pit Pietsch, and Maik Schmidt. 2012. Adaptability of

Model Comparison Tools. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). ACM, 306–309.

[36] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2014.

Hey! Are You Committing Tangled Changes?. In Proc. Int’l Conf. on Program
Comprehension (ICPC). ACM, 262–265.

[37] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2016. Split-

ting Commits via Past Code Changes. In Proc. Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 129–136.

[38] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina

Schaefer. 2017. Is There a Mismatch Between Real-World Feature Models and

Product-Line Research?. In Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE). ACM, 291–302.

[39] Patrick Kreutzer, Georg Dotzler, Matthias Ring, Bjoern M. Eskofier, and Michael

Philippsen. 2016. Automatic Clustering of Code Changes. In Proc. Working Conf.
on Mining Software Repositories (MSR). ACM, 61–72.

[40] Christian Kröher, Lea Gerling, and Klaus Schmid. 2023. Comparing the Intensity

of Variability Changes in Software Product Line Evolution. J. Systems and Software
(JSS) 203 (2023), 111737.

[41] Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thüm, and Gunter

Saake. 2022. Tseitin or not Tseitin? The Impact of CNF Transformations on

Feature-Model Analyses. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). ACM, 110:1–110:13.

[42] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. #ifdef Confirmed Harmful:

Promoting Understandable Software Variation. In Proc. Int’l Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 143–150.

[43] Daniel Le Berre and Anne Parrain. 2010. The Sat4j Library, Release 2.2. J.
Satisfiability, Boolean Modeling and Computation 7, 2-3 (2010), 59–64.

[44] Yi Li, Julia Rubin, and Marsha Chechik. 2023. Semantic History Slicing. In

Handbook of Re-Engineering Software Intensive Systems into Software Product
Lines. Springer, 53–77.

[45] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. UTANGO: Untangling Commits

with Context-Aware, Graph-Based, Code Change Clustering Learning Model.

In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, 221–232.

[46] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael

Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-

ware Product Lines. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE,

https://github.com/VariantSync/DiffDetective/raw/splc23-views/appendix/appendix-splc23-views.pdf
https://github.com/VariantSync/DiffDetective/raw/splc23-views/appendix/appendix-splc23-views.pdf
https://github.com/VariantSync/DiffDetective/tree/splc23-views/replication/splc23-views
https://github.com/VariantSync/DiffDetective/tree/splc23-views/replication/splc23-views
https://doi.org/10.5281/zenodo.8027920


SPLC ’23, August 28-September 1, 2023, Tokyo, Japan P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr, S. Krieter, C. Tinnes, T. Kehrer, T. Thüm

105–114.

[47] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and

Christian Lengauer. 2013. Scalable Analysis of Variable Software. In Proc. Europ.
Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM,

81–91.

[48] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification

of Variation Control Systems. In Proc. Int’l Conf. on Generative Programming:
Concepts & Experiences (GPCE). ACM, 49–62.

[49] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2017.

Variability Extraction and Modeling for Product Variants. Software and System
Modeling (SoSyM) 16, 4 (2017), 1179–1199.

[50] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.

Concepts of Variation Control Systems. J. Systems and Software (JSS) 171 (2021),
110796.

[51] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and Wolfgang

Schröder-Preikschat. 2006. A Quantitative Analysis of Aspects in the eCos Kernel.

40, 4 (2006), 191–204.

[52] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej

Wąsowski. 2010. Evolution of the Linux Kernel Variability Model. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). Springer, 136–150.

[53] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,

Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:

Refactoring of Preprocessor Directives in the #ifdef Hell. IEEE Trans. on Software
Engineering (TSE) 44, 5 (2018), 453–469.

[54] Gabriela K. Michelon, Wesley K. G. Assunção, David Obermann, Lukas Linsbauer,

Paul Grünbacher, and Alexander Egyed. 2021. The Life Cycle of Features in

Highly-Configurable Software Systems Evolving in Space and Time. In Proc. Int’l
Conf. on Generative Programming: Concepts & Experiences (GPCE). ACM, 2–15.

[55] Gabriela Karoline Michelon, David Obermann, Lukas Linsbauer, Wesley Klew-

erton Guez Assunção, Paul Grünbacher, and Alexander Egyed. 2020. Locating

Feature Revisions in Software Systems Evolving in Space and Time. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, Article 14, 11 pages.

[56] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.

Uniform Random Sampling Product Configurations of Feature Models That Have

Numerical Features. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).
ACM, 289–301.

[57] Ward Muylaert and Coen De Roover. 2018. Untangling Composite Commits

Using Program Slicing. In Proc. Int’l Working Conf. on Source Code Analysis and
Manipulation (SCAM). IEEE, 193–202.

[58] Hoan Anh Nguyen, Tien N. Nguyen, Danny Dig, Son Nguyen, Hieu Tran, and

Michael Hilton. 2019. Graph-Based Mining of in-the-Wild, Fine-Grained, Seman-

tic Code Change Patterns. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE,
819–830.

[59] Michael Nieke, Gil Engel, and Christoph Seidl. 2017. DarwinSPL: An Integrated

Tool Suite for Modeling Evolving Context-aware Software Product Lines. In Proc.
Int’l Workshop on Variability Modelling of Software-Intensive Systems (VaMoS).
ACM, 92–99.

[60] Yusuf Sulistyo Nugroho, Hideaki Hata, and Kenichi Matsumoto. 2020. How

Different are Different Diff Algorithms in Git? Empirical Software Engineering
(EMSE) 25, 1 (2020), 790–823.

[61] Profir-Petru Pârtachi, Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr.

2020. Flexeme: Untangling Commits Using Lexical Flows. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM, 63–74.

[62] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wą-

sowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolution of

Variability Models and Related Software Artifacts. Empirical Software Engineering
(EMSE) 21, 4 (2016).

[63] Tobias Pett, Sebastian Krieter, Tobias Runge, Thomas Thüm, Malte Lochau, and

Ina Schaefer. 2021. Stability of Product-Line Sampling in Continuous Integration.

In Proc. Int’l Working Conf. on Variability Modelling of Software-Intensive Systems
(VaMoS). ACM, Article 18, 9 pages.

[64] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[65] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.

In Domain Engineering: Product Lines, Languages, and Conceptual Models, Iris
Reinhartz-Berger, Arnon Sturm, Tony Clark, Sholom Cohen, and Jorn Bettin

(Eds.). Springer, 29–58.

[66] Alexander Schultheiß, Paul Maximilian Bittner, Sascha El-Sharkawy, Thomas

Thüm, and Timo Kehrer. 2022. Simulating the Evolution of Clone-and-Own

Projects with VEVOS. In Proc. Int’l Conf. on Evaluation Assessment in Software
Engineering (EASE). ACM, 231–236.

[67] Felix Schwägerl and Bernhard Westfechtel. 2016. SuperMod: Tool Support for

Collaborative Filtered Model-Driven Software Product Line Engineering. In Proc.
Int’l Conf. on Automated Software Engineering (ASE). ACM, 822–827.

[68] Felix Schwägerl and Bernhard Westfechtel. 2019. Integrated Revision and Varia-

tion Control for Evolving Model-Driven Software Product Lines. Software and
System Modeling (SoSyM) 18, 6 (2019), 3373–3420.

[69] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. DeltaEcore - A Model-

Based Delta Language Generation Framework. In Proc. Modellierung. Gesellschaft
für Informatik, 81–96.

[70] Francisco Servant and James A. Jones. 2012. History Slicing: Assisting Code-

Evolution Tasks. In Proc. Int’l Symposium on Foundations of Software Engineering
(FSE). ACM, Article 43, 11 pages.

[71] Francisco Servant and James A. Jones. 2013. Chronos: Visualizing Slices of Source-

Code History. In Proc. Working Conf. on Software Visualization (VISSOFT). IEEE,
1–4.

[72] Ridwan Shariffdeen, Xiang Gao, Gregory J. Duck, Shin Hwei Tan, Julia Lawall, and

Abhik Roychoudhury. 2021. Automated Patch Backporting in Linux (Experience

Paper). In Proc. Int’l Symposium on Software Testing and Analysis (ISSTA). ACM,

633–645.

[73] Bo Shen, Wei Zhang, Christian Kästner, Haiyan Zhao, Zhao Wei, Guangtai Liang,

and Zhi Jin. 2021. SmartCommit: AGraph-Based Interactive Assistant for Activity-

Oriented Commits. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). ACM, 379–390.

[74] Janet Siegmund. 2016. Program Comprehension: Past, Present, and Future. In

Proc. Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). IEEE,
13–20.

[75] Sarocha Sothornprapakorn, Shinpei Hayashi, and Motoshi Saeki. 2018. Visualiz-

ing a Tangled Change for Supporting Its Decomposition and Commit Construc-

tion. In Proc. on Computer Software and Applications Conf. (COMPSAC), Vol. 01.
IEEE, 74–79.

[76] Christopher S. Strachey. 2000. Fundamental Concepts in Programming Languages.

Higher-Order and Symbolic Computation 13, 1/2 (2000), 11–49.

[77] Stefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wąsowski.

2016. Concepts, Operations, and Feasibility of a Projection-Based Variation

Control System. In Proc. Int’l Conf. on SoftwareMaintenance and Evolution (ICSME).
IEEE, 323–333.

[78] Chico Sundermann, Thomas Thüm, and Ina Schaefer. 2020. Evaluating #SAT

Solvers on Industrial Feature Models. In Proc. Int’l Working Conf. on Variability
Modelling of Software-Intensive Systems (VaMoS). ACM, Article 3, 9 pages.

[79] Yida Tao and Sunghun Kim. [n. d.]. Partitioning Composite Code Changes to

Facilitate Code Review. In Proc. Working Conf. on Mining Software Repositories
(MSR). IEEE, 180–190.

[80] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai

Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.

2019. Towards Efficient Analysis of Variation in Time and Space. In Proc. Int’l
Workshop on Variability and Evolution of Software-Intensive Systems (VariVolution).
ACM, 57–64.

[81] Grigori S. Tseytin. 1983. On the Complexity of Derivation in Propositional Calculus.
Springer, 466–483.

[82] Sören Viegener. 2021. Empirical Evaluation of Feature Trace Recording on the Edit
History of Marlin. Bachelor’s Thesis. University of Ulm.

[83] Anneliese von Mayrhauser, A. Marie Vans, and Adele E. Howe. 1997. Program

Understanding Behaviour During Enhancement of Large-Scale Software. J.
Software: Evolution and Process 9, 5 (1997), 299–327.

[84] Eric Walkingshaw. 2013. The Choice Calculus: A Formal Language of Variation.
Ph. D. Dissertation. Oregon State University.

[85] EricWalkingshaw and Klaus Ostermann. 2014. Projectional Editing of Variational

Software. In Proc. Int’l Conf. on Generative Programming: Concepts & Experiences
(GPCE). ACM, 29–38.

[86] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Devel-

opers Perform Feature Location Tasks: A Human-Centric and Process-Oriented

Exploratory Study. J. Software: Evolution and Process 25, 11 (2013), 1193–1224.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1593

[87] Min Wang, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2020. CoRA: Decomposing and

Describing Tangled Code Changes for Reviewer. In Proc. Int’l Conf. on Automated
Software Engineering (ASE). IEEE, 1050–1061.

[88] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2020. GenSlice: Gener-

alized Semantic History Slicing. In Proc. Int’l Conf. on Software Maintenance and
Evolution (ICSME). IEEE, 81–91.

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1593

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Motivating Example
	2.2 Background on Software Variability
	2.3 Background on Edits to Software Variability

	3 Views on Variational Systems
	4 Interesting Views and Examples
	4.1 Partial Configuration
	4.2 Feature Traces
	4.3 Artifact Search

	5 Views on Edits to Variability
	5.1 Correctness Criterion
	5.2 Generating Views
	5.3 Optimized View Generation
	5.4 Implementation

	6 Feasibility Study
	6.1 Experiment Setup
	6.2 Datasets
	6.3 Results and Discussion
	6.4 Threats to Validity

	7 Related Work
	7.1 Views to Variability
	7.2 Commit Untangling

	8 Conclusion
	References

