
Generating Feature Models with UVL’s Full Expressiveness
Chico Sundermann

University of Ulm
Germany

Tobias Heß
University of Ulm

Germany

Rahel Sundermann
University of Ulm

Germany

Elias Kuiter
University of Magdeburg

Germany

Sebastian Krieter
Paderborn University

Germany

Thomas Thüm
Paderborn University

Germany

ABSTRACT
The Universal Variability Language (UVL) is a textual format for
specifying feature models. UVL has optional language levels (i.e.,
extensions) that add more expressive functionality to the base lan-
guage, such as numerical constraints over attributes. However,
those levels have been a rather recent addition. Also, most other
established formats only support a subset of UVL’s expressiveness.
Consequently, there are currently only very few feature models
available that use the more sophisticated language levels of UVL.
The lack of such feature models hinders research and tool devel-
opment that targets more expressive feature models. In particular,
this makes it difficult to develop efficient reasoning engines or
conversions between the different levels. In this work, we present
UVLGenerator, a first prototype for generating UVL models that
make use of all available language levels. The generator supports
configuring various structural properties that, inter alia, control
which language levels are used.

CCS CONCEPTS
• Software and its engineering→ Software product lines.

KEYWORDS
feature modeling, UVL, feature-model generator, benchmark
ACM Reference Format:
Chico Sundermann, Tobias Heß, Rahel Sundermann, Elias Kuiter, Sebastian
Krieter, and Thomas Thüm. 2024. Generating Feature Models with UVL’s
Full Expressiveness. In 28th ACM International Systems and Software Product
Line Conference (SPLC ’24), September 2–6, 2024, Dommeldange, Luxembourg.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3646548.3676602

1 INTRODUCTION
The Universal Variability Language (UVL) is a textual notation
for feature models [33]. Since the proposal of the first version in
2021 [33], UVL has been repeatedly considered in research and it has
already been integrated in several tools for variabilitymodeling [10–
12, 14, 15, 17, 20, 26–28, 34].

UVL has several language levels that extend the base language
with more expressive constructs [35]. For example, the extending

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0593-9/24/09.
https://doi.org/10.1145/3646548.3676602

levels support numerical constraints over attributes as well as non-
Boolean (i.e., numeric or string) features [35]. In general, when
designing a variability language, there is a tradeoff between the
simplicity of the language and its expressiveness. A language should
be easy to learn and understand but also be able to specify regular
user applications. The language levels in UVL aim to reduce the
drawbacks of this tradeoff. In particular, the base language should
be easy to learn for modelers and reduce effort to tool integration,
while the higher language levels add more sophisticated constructs
for more expressiveness [12, 27].

Independent of their format, the availability of feature models
with constructs from more expressive language levels is currently
limited [26, 28, 33]. In particular, the vast majority of available UVL
models only uses the base language [28, 33]. Furthermore, many
established formats, such as FeatureIDE [21] or SXFM [22] do not
support constructs of the higher language levels, such as typed
features or numerical constraints. Consequently, available feature
models from other formats generally also do not contain the more
expressive constructs. Transforming available feature models, thus,
does not produce UVL models with higher language levels either.

The limited availability of feature models with higher language
levels hampers research on those language constructs. For instance,
performing automated analyses on more expressive UVL language
levels requires according reasoning engines (e.g., SMT [8]). How-
ever, testing and optimizing potential solutions for automated rea-
soning requires UVL instances with the respective levels, which
are currently lacking in the literature. Missing scalable solutions
may consequently prevent adoption of such levels in practice.

One way to acquire feature models is by generating them ran-
domly. While random instances are not always representative for
real instances [2, 16, 19], structural properties (e.g., number of
features) and included language levels can be controlled. Also, gen-
erating can bridge the gap until additional real instances have been
published. Available generators [21, 22, 29] can be combined with
conversion approaches, such as TraVarT [11], to get UVL models,
but their expressiveness is again limited to the original format.

In this work, we propose UVLGenerator, a prototype for generat-
ing UVL models that cover all available language constructs in UVL.
Our generator supports various configuration options to control
properties, such as number of features, distribution of feature types,
constraint sizes, and attached attributes. The configurations are in-
tended for reproducible generation of feature models. Furthermore,
we implemented an SMT-based reasoning engine to ensure that the
generated models induce at least one valid configuration, if needed.

https://orcid.org/0000-0002-5239-3307
https://orcid.org/0000-0001-9389-9278
https://orcid.org/0009-0000-3135-2680
https://orcid.org/0000-0003-0429-2461
https://orcid.org/0000-0001-7077-7091
https://orcid.org/0000-0001-8069-9584
https://doi.org/10.1145/3646548.3676602
https://doi.org/10.1145/3646548.3676602
Chico Sundermann
This is the author's version of the work. The main goal of this PDF is to give up-to date comments and information around the work, including follow-up work and already identified mistakes.

If you have any questions or comments, please get in contact with the authors.



SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Chico Sundermann, Tobias Heß, Rahel Sundermann, Elias Kuiter, Sebastian Krieter, and Thomas Thüm

Table 1: UVL Language Levels

Level Included Constructs

Boolean Boolean features
Parent-child groups
Boolean CTC
Attributes

Boolean Group Cardinality Group cardinality [n..m]
Arithmetic Numeric constraints over attributes
Arithmetic Feature Cardinality Feature cardinality [n..m]
Arithmetic Aggregates avg(attribute), sum(attribute)
Type Integer, Real, String features

Numeric constraints over features
Type String Constraints String comparison

len(string)

2 THE UNIVERSAL VARIABILITY LANGUAGE
In this section, we give a short introduction on the Universal Vari-
ability Language (UVL). Table 1 shows the different language con-
structs in UVL, grouped by their respective language level. The
levels are separated in major (e.g., Boolean) and minor (e.g., Aggre-
gates) language levels which encapsulate certain constructs. Minor
levels always belong to a major level. Using a minor language level
for a UVL model always required to include its major level. Fur-
thermore, using a higher major level requires to include the lower
language levels. In Table 1 the levels are sorted in ascending order
from top to bottom. For instance, type is the highest major level and,
thus, mandates to include arithmetic and Boolean. Listing 1 shows
an example UVL model that describes a pizza product line, which
contains all language levels. In the following, we shortly explain
the different language levels using our running example.

2.1 Boolean Level
The Boolean core level is the base language of UVL. Every other
level automatically includes the Boolean level. The core level in-
cludes Boolean features, parent-child groups, and Boolean cross-tree
constraints. The parent-child groups consist of optional (i.e., select
any), mandatory (i.e., select all), or (i.e., select at least one), and
alternative (i.e., select exactly one). Examples for the groups can
be seen in lines 2–13 in our running example Listing 1. Each pizza
needs a Base, exactly one type of Sauce, and may contain one
or multiple types of Cheese. Boolean cross-tree constraints are
Boolean formulas with common operators, such as conjunctions or
implications. For instance, Cheddar cannot be selected with Creme
Fraiche (l. 28). Attributes (e.g., the price of a feature) can be at-
tached to features as additional information (e.g., l. 4), but cannot
be used in constraints in the Boolean level. UVL supports different
types of attributes, such as numbers, strings, Booleans, and a list
of nested attributes. As a minor level of the Boolean level, group
cardinality introduces a parent-child relationship that enables the
selection of [n..m] child features. For example, between one and
three Toppings can be selected (l. 15–19). Most feature models cur-
rently available in UVL and other available formats are specified in
the Boolean language level [1, 3, 14, 19, 21, 22, 28, 33].

Listing 1: UVL Model Example
1 features

2 Pizza {City 'Omashu'}
3 mandatory

4 Base {Price 2.0}
5 Sauce
6 alternative

7 Tomato {Price 0.8}
8 "Creme Fraiche" {Price 1.1}
9 optional

10 Cheese
11 or

12 Mozarella {Price 0.4}
13 Cheddar {Price 0.6}
14 Toppings
15 [1..3]
16 Mushrooms {Price 0.5}
17 Onion {Price 0.3}
18 Olive {Price 0.3}
19 Pineapple {Price 0.8}
20 mandatory

21 Integer Size
22 DeliveryAddress cardinality [1..10]
23 mandatory

24 String Street
25 String City
26
27 constraints

28 Cheddar => !"Creme Fraiche"
29 sum(Price) < 5
30 20 < Size & Size < 60
31 City == Pizza.City
32 len(Street) < 100

2.2 Arithmetic Level
The arithmetic core level introduces predicates over numeric at-
tributes. Here, common arithmetic operators, such as +, -, *, =, and <,
are supported. The predicates always need to evaluate to a Boolean
value (i.e., true or false) and can be embedded in other cross-tree
constraints (e.g., l. 30).

Feature cardinality is a minor level of the arithmetic level and
enables selecting a single feature multiple times. For instance, mul-
tiple delivery addresses can be configured (l. 22). Aggregates are
another minor level of the arithmetic level and simplifies the speci-
fication of arithmetic constraints with aggregate functions, namely
sum and average, over attributes with the same name. For example,
the overall price needs to be smaller than 5 (l. 29).

2.3 Type Level
The type core level supports typed features with the types real,
integer, and string. For instance, the Size of the pizza is an integer (l.
21) and the Street and City are strings (l. 24–25). Real and integer
features can also be used in the numerical predicates from the
arithmetic level. For instance, the Size needs to be between 20 and
60 (l. 30). String constraints introduce constraints over string values
supporting attributes (e.g., Pizza.City), features (e.g., City), and
constants (e.g., ’Omashu’). Hereby, one can reason about equality
of strings and their length. String constants are always enclosed by
single parentheses (i.e., ’..’). In our example, the delivery location
needs to be in the same City as the pizza place (l. 31) and the length
of the Street may be at most 100 (l. 32).



Generating Feature Models with UVL’s Full Expressiveness SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

3 UVLGENERATOR
Our proposal UVLGenerator creates a set of random UVL feature
models which meet different requirements that can be configured.
Controlling these parameters can also be used to implicitly limit the
used language levels in generated feature models. In the following,
we describe the key aspects of the generator. For more technical
details, we refer to the implementation.1

3.1 Parameter Configuration
The parameters in UVLGenerator support specifying properties for
different parts of the feature model, namely general information,
the tree hierarchy, constraints, and attributes. A parameter config-
uration can be specified as a JSON file and given to the generator.
Listing 2 shows an example configuration JSON, which we use to
explain the different options in the following.

General Information. The general (l. 2–7) information provides (1)
information on the created set of feature models, and (2) properties
to reproduce the generated set of featuremodels. For (1), the number
of models to generate and whether only satisfiable (i.e., at least one
valid configuration) models should be included can be specified.
For (2), one can define the seed for the random number generation
and the version of the used generator.

Tree Hierarchy. The configuration for the tree (l. 8–33) hierarchy
controls the properties for generating features and parent-child
relationships. For features, the user can specify their number (l.
10), the distribution of feature types (l. 11–16), and the usage of
cardinalities (l. 17–21). For specifying the number of features (and
similar options), either a number or a range can be given. With
the latter, a random number within the range is selected for every
feature model. In our example Listing 2, each feature model in the
generated set contains 800–1,000 features. The distribution supports
selecting percentages with which a feature is of the specified type,
which always adds up to exactly one. For feature cardinalities, one
can specify numbers or ranges for the upper and lower bound
and a probability with which a feature has a cardinality. Also, a
maximum tree depth can be specified (l. 23). Then, features which
are at the maximum specified depth will not be considered as parent
for subsequently generated features. To specify parent-child groups,
we also use a distribution between the group types (l. 25–32).

Constraints. For constraints (l. 34–44), one can also specify the
number of constraints to include. The Extra Constraint Represen-
tativeness (ECR) [24] specifies the share of features that appear in
cross-tree constraints. The size of constraints can be determined as
well as a distribution for the types of constraints. Here, operators
and variables are chosen randomly from eligible options.

Attributes. For attributes (l. 45–52), we decided not to use a fully
random generation, as we expect attributes to be used over several
features across the feature model [30]. Aggregate functions also
can only be reasonably applied for attributes used across multiple
features. Consequently, users need to define specific attributes, their
value range, and the probability to attach the attribute to a feature.
For instance, in Listing 2, Price attributes are attached to features
with a 50% chance and can have values between 10 and 1,000.
1https://github.com/SoftVarE-Group/uvlgenerator

Listing 2: Configuration Example
1 {

2 "general" : {

3 "numberModels" : 100,

4 "seed" : 42,

5 "ensureSAT" : true ,

6 "generatorVersion" : "0.1"

7 },

8 "tree" : {

9 "features" : {

10 "number" : [800,1000],

11 "distribution" : {

12 "Boolean" : 0.7,

13 "integer" : 0.2,

14 "real" : 0.1,

15 "string" : 0

16 }

17 "cardinality" : {

18 "min" : [1,2],

19 "max" : 5,

20 "attachProbability" : 0.05

21 }

22 },

23 "maxTreeDepth" : 5,

24 "groups" : {

25 "distribution": {

26 "optional" : 0.1,

27 "mandatory" : 0.2,

28 "alternative" : 0.5,

29 "or" : 0.2,

30 "groupCardinality" : 0

31 }

32 }

33 },

34 "constraints" : {

35 "number" : [200,300],

36 "ecr" : 0.8,

37 "variablesPerConstraint" : [2,15],

38 "distribution" : {

39 "Boolean" : 0.9,

40 "numeric" : 0.07,

41 "aggregate" : 0.03,

42 "string" : 0

43 }

44 },

45 "attributes" : [

46 {

47 "name" : "Price",

48 "value" : [10,1000],

49 "attachProbability" : 0.5,

50 "useInConstraints" : true

51 }

52 ]

53 }

3.2 Reasoning
To ensure satisfiability of the generated models, we use SMT solv-
ing [8]. Hereby, we convert every constraint imposed by the hierar-
chy or the cross-tree constraints to a semantically equivalent SMT
formula. Then, we create a formula equivalent to the entire feature
model by creating a conjunction over these sub-formulas.

Table 2 shows the mapping between UVL constructs and SMT
formulas, which extends common translation proposals for feature
models [3, 4, 6] with translations for the higher language levels of

https://github.com/SoftVarE-Group/uvlgenerator


SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Chico Sundermann, Tobias Heß, Rahel Sundermann, Elias Kuiter, Sebastian Krieter, and Thomas Thüm

UVL. The root is mandatory for UVL feature models. As the inclu-
sion of a feature always mandates the inclusion of its parent, we
add an implication for every feature to its parent feature. Feature
cardinalities [n..m] are not trivial to translate since a feature with
a cardinality may have a subtree [6]. Hence, for conversion into a
formula, we create m clones of the subtrees and then create the con-
straints for a group cardinality over their respective root features.
The numeric and Boolean cross-tree constraints use common oper-
ators and can be equivalently specified in SMT. Here, we always
multiply the Boolean variable of the corresponding feature (0 or 1)
with the attribute value to discard attributes of unselected features.
For the implementation,2 we use the JavaSMT [18] interface with
the Z3 [7] solver as a backend. The project can also be used as
simple standalone reasoner for UVL.

Table 2: Mapping UVL To SMT

UVL Construct SMT Formula

Root 𝑟 𝑟

Child 𝑐 of 𝑝 𝑐 ⇒ 𝑝

Mandatory 𝑐 of 𝑝 𝑝 ⇒ 𝑐

or 𝑜1, .., 𝑜𝑛 of 𝑝 𝑝 ⇒ (𝑜1 ∨ .. ∨ 𝑜𝑛 )
alternative 𝑎1, .., 𝑎𝑛 of 𝑝 𝑝 ⇒ ((𝑎1 ∨ .. ∨ 𝑎𝑛 ) ∧ atMost(𝑎1, .., 𝑎𝑛 ) )
Group [n..m] 𝑐1, .., 𝑐𝑙 of 𝑝 𝑝 ⇒ (atLeast(𝑛, 𝑐1, .., 𝑐𝑙 )

∧ atMost(𝑚,𝑐1, .., 𝑐𝑙 ) )
Feature [n..m] Expand clones and group [n..m]
Boolean constraints Boolean formula
Numeric constraints Numeric formula
Aggregate sum(att) f1 * f1.att + f2 * f2.att + .. + fn * fn.att
Aggregate avg(att) sum(att) / (f1 + f2 + .. + fn)

0 if none of f1, .., fn is selected
String equality str1, str2 str1 == str2
String length len(const) Numeric constants
String length len(v) Numeric variable v-len

4 RELATEDWORK
Feature-Model Generators. BeTTy [29] is a feature-model genera-

tor that supports the constructs from the UVL Boolean level. As our
proposal, BeTTy is highly customizable and is known to produce
more complex and higher constrained feature models compared
to previous generators, such as the ad-hoc generator of Mendonça
et al. [24] or the built-in generator of S.P.L.O.T. [22]. FeatureIDE [21]
also comes with an integrated feature-model generator [36]. All
the listed feature-model generators [21, 24, 29], only support lan-
guage constructs from the UVL Boolean level. Derks et al. presented
vpbench, a modular generator that generates an evolution history
of a configurable system [9]. While their generator also generates
solution-space artifacts together with additional metadata, the gen-
eration of the feature model is limited to the Boolean level. Finally,
Galindo et al. proposed an LLM-based feature model generator
trained on a set of feature models [13]. They found that their ap-
proach closely mirrored the input models in terms of structure and
generated models with sufficient complexity. Again, their generator
only supports the Boolean level. However, it is feasible that their
approach could also be used for other language levels, although

2https://github.com/SoftVarE-Group/uvl-smt

it is questionable if meaningful models can be generated in other
language levels without solver guidance.

Feature-Model Collections. Various publications provide a set of
feature models [5, 19, 22, 28, 32, 33]. While not all of those are avail-
able in UVL, they can be translated to UVL using converters such
as TraVart [11] or FeatureIDE [21]. Many of those feature models
represent real instances from industries. However, none of these
feature models contain all language constructs of UVL. In particu-
lar, DIMACS [5] can only represent a subset of UVL core language,
FeatureIDE models [19] support the same constructs as the UVL
core language, and SXFM [22] supports the Boolean level including
group cardinalities. The available UVL models [28, 33] only use
the Boolean core level. Consequently, many UVL constructs do not
appear at all in available feature models.

5 CONCLUSION
Currently available feature models in UVL [28, 33] and other for-
mats [19, 21, 22] are generally limited to a small subset of the
language levels available in UVL. Hence, research on the missing
language levels is hampered. In this work, we provide a first pro-
posal for generating UVL models that supports the creation of all
current language constructs. We expect that the generator facili-
tates research that targets higher language levels, such as reasoning
engines for UVL or conversion strategies between levels [35]. Still,
we expect that our prototype generator can be further extended
to cover more specific use cases. We consider various future re-
search directions for the generation that target practice relevance,
scalability, and covering more use cases.

Realistic Feature Models. Generated instances often behave vastly
differently than real ones [2]. Currently, our generator targets fully
randomized UVL models. In the future, it could be valuable to
generate models that follow properties from real-world instances.

Scalability. With the generator, we can create feature models
that induce computationally complex problems. For instance, many
constructs cannot be trivially represented as Boolean formulas and,
thus, SAT solvers, which are widely used and very fast for analyzing
many feature models [23] cannot be easily applied. In particular,
the added complexity can vastly increase solving times [25, 31].
When mandating satisfiable feature models, the generation process
needs to solve satisfiability during the creation. For large feature
models, especially with complex constraints, the generation may
induce large runtimes or not scale at all. In the future, we plan
to (1) empirically evaluate the scalability of the generator and (2)
further optimize the generation process to use less and potentially
simplified SMT computations.

Community Discussion. The current requirements are mostly
motivated by experiences of the authors. Hence, their scope may
be rather limited. We expect that discussing different use cases,
requirements, and properties that should be configurable with the
community will lead to relevant future research and valuable ex-
tensions for UVLGenerator. Furthermore, it may be valuable to
empirically evaluate how well the current or adapted future ver-
sions cover the requirements of the community.

https://github.com/SoftVarE-Group/uvl-smt


Generating Feature Models with UVL’s Full Expressiveness SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.

Familiar: A Domain-Specific Language for Large Scale Management of Feature
Models. Science of Computer Programming (SCP) 78, 6 (2013), 657–681.

[2] Carlos Ansótegui, María Luisa Bonet, and Jordi Levy. 2009. On the Structure of
Industrial SAT Instances. In Proc. Int’l Conf. on Principles and Practice of Constraint
Programming (CP). Springer, 127–141.

[3] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Proc. Int’l Systems and Software Product Line Conf. (SPLC). Springer, 7–20.

[4] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–708.

[5] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. on Software Engineering (TSE) 39, 12 (2013), 1611–
1640.

[6] Krzysztof Czarnecki and ChangHwan Peter Kim. 2005. Cardinality-Based Feature
Modeling and Constraints: A Progress Report. In Proc. Int’l Workshop on Software
Factories (SF). 16–20.

[7] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.
In Proc. Int’l Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Springer, 337–340.

[8] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability Modulo Theories:
Introduction and Applications. Comm. ACM 54, 9 (2011), 69–77.

[9] Christoph Derks, Daniel Strüber, and Thorsten Berger. 2023. A Benchmark Gen-
erator Framework for Evolving Variant-Rich Software. J. Systems and Software
(JSS) 203, Article 111736 (2023).

[10] Hafiyyan Sayyid Fadhlillah, Kevin Feichtinger, Philipp Bauer, Elene Kutsia, and
Rick Rabiser. 2022. V4rdiac: Tooling for Multidisciplinary Delta-Oriented Variabil-
ity Management in Cyber-Physical Production Systems. In Proc. Int’l Workshop on
Languages for Modelling Variability (MODEVAR) (Proc. Int’l Systems and Software
Product Line Conf. (SPLC)). ACM, 34–37.

[11] Kevin Feichtinger, Johann Stöbich, Dario Romano, and Rick Rabiser. 2021.
TRAVART: An Approach for Transforming Variability Models. In Proc. Int’l
Working Conf. on Variability Modelling of Software-Intensive Systems (VaMoS).
ACM, Article 8, 10 pages.

[12] Kevin Feichtinger, Chico Sundermann, Thomas Thüm, and Rick Rabiser. 2022.
It’s Your Loss: Classifying Information Loss During Variability Model Roundtrip
Transformations. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).
ACM, 67–78.

[13] José A. Galindo, Antonio J. Dominguez, Jules White, and David Benavides. 2023.
Large Language Models to Generate Meaningful Feature Model Instances. In
Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, 15–26.

[14] José A. Galindo, José Miguel Horcas, Alexander Felfernig, David Fernández-
Amorós, and David Benavides. 2023. FLAMA: A Collaborative Effort to Build
a New Framework for the Automated Analysis of Feature Models. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, 16–19.

[15] Tobias Heß, Tobias Müller, Chico Sundermann, and Thomas Thüm. 2022.
ddueruem: A Wrapper for Feature-Model Analysis Tools. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC). ACM, 54–57.

[16] Tobias Heß, Chico Sundermann, and Thomas Thüm. 2021. On the Scalability
of Building Binary Decision Diagrams for Current Feature Models. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, 131–135.

[17] JoseM.Horcas, Jose A. Galindo,Mónica Pinto, Lidia Fuentes, andDavid Benavides.
2022. FM Fact Label: A Configurable and Interactive Visualization of Feature
Model Characterizations. In Proc. Int’l Workshop on Languages for Modelling
Variability (MODEVAR) (Proc. Int’l Systems and Software Product Line Conf. (SPLC)).
ACM, 42–45.

[18] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. 2016. JavaSMT:
A Unified Interface for SMT Solvers in Java. In Proc. IFIP Working Conf. on Verified
Software: Theories, Tools, Experiments (VSTTE). Springer, 139–148.

[19] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. 2017. Is There a Mismatch Between Real-World Feature Models and
Product-Line Research?. In Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE). ACM, 291–302.

[20] Jacob Loth, Chico Sundermann, Tobias Schrull, Thilo Brugger, Felix Rieg, and
Thomas Thüm. 2023. UVLS: A Language Server Protocol for UVL. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, 43–46.

[21] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017.Mastering Software VariabilityWith FeatureIDE. Springer.

[22] Marcílio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Soft-
ware Product Lines Online Tools. In Proc. Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). ACM, 761–762.

[23] Marcílio Mendonça, Andrzej Wąsowski, and Krzysztof Czarnecki. 2009. SAT-
Based Analysis of Feature Models Is Easy. In Proc. Int’l Systems and Software
Product Line Conf. (SPLC). Software Engineering Institute, 231–240.

[24] Marcílio Mendonça, Andrzej Wąsowski, Krzysztof Czarnecki, and Donald Cowan.
2008. Efficient Compilation Techniques for Large Scale Feature Models. In Proc.
Int’l Conf. on Generative Programming and Component Engineering (GPCE). ACM,
13–22.

[25] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.
Uniform Random Sampling Product Configurations of Feature Models That Have
Numerical Features. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).
ACM, 289–301.

[26] Daniel-Jesus Munoz, Mónica Pinto, Lidia Fuentes, and Don Batory. 2023. Trans-
forming Numerical Feature Models into Propositional Formulas and the Universal
Variability Language. J. Systems and Software (JSS) 204, Article 111770 (2023).

[27] Dario Romano, Kevin Feichtinger, Danilo Beuche, Uwe Ryssel, and Rick Rabiser.
2022. Bridging the Gap Between Academia and Industry: Transforming the Uni-
versal Variability Language to Pure::Variants and Back. In Proc. Int’l Workshop on
Languages for Modelling Variability (MODEVAR) (Proc. Int’l Systems and Software
Product Line Conf. (SPLC)). ACM, 123–131.

[28] David Romero-Organvídez, José A Galindo, Chico Sundermann, Jose-Miguel
Horcas, and David Benavides. 2024. UVLHub: A Feature Model Data Repository
Using UVL and Open Science Principles. J. Systems and Software (JSS) (2024).
To appear.

[29] Sergio Segura, José A. Galindo, David Benavides, José A. Parejo, and Antonio
Ruiz-Cortés. 2012. BeTTy: Benchmarking and Testing on the Automated Analysis
of Feature Models. In Proc. Int’l Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS). ACM, 63–71.

[30] Norbert Siegmund, Stefan Sobernig, and Sven Apel. 2017. Attributed Variabil-
ity Models: Outside the Comfort Zone. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE). ACM, 268–278.

[31] Joshua Sprey, Chico Sundermann, Sebastian Krieter, Michael Nieke, JacopoMauro,
Thomas Thüm, and Ina Schaefer. 2020. SMT-Based Variability Analyses in Fea-
tureIDE. In Proc. Int’l Working Conf. on Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, Article 6, 9 pages.

[32] Chico Sundermann, Vincenzo Francesco Brancaccio, Elias Kuiter, Sebastian Kri-
eter, Tobias Heß, and Thomas Thüm. 2024. Collecting Feature Models from the
Literature: A Comprehensive Dataset for Benchmarking. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC). ACM. To appear.

[33] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and
Thomas Thüm. 2021. Yet Another Textual Variability Language? A Community
Effort Towards a Unified Language. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 136–147.

[34] Chico Sundermann, Tobias Heß, Dominik Engelhardt, Rahel Arens, Johannes
Herschel, Kevin Jedelhauser, Benedikt Jutz, Sebastian Krieter, and Ina Schaefer.
2021. Integration of UVL in FeatureIDE. In Proc. Int’l Workshop on Languages for
Modelling Variability (MODEVAR). ACM, 73–79.

[35] Chico Sundermann, Stefan Vill, Thomas Thüm, Kevin Feichtinger, Prankur Agar-
wal, Rick Rabiser, José A. Galindo, and David Benavides. 2023. UVLParser:
Extending UVL With Language Levels and Conversion Strategies. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, 39–42.

[36] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning About
Edits to Feature Models. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE,
254–264.


	Abstract
	1 Introduction
	2 The Universal Variability Language
	2.1 Boolean Level
	2.2 Arithmetic Level
	2.3 Type Level

	3 UVLGenerator
	3.1 Parameter Configuration
	3.2 Reasoning

	4 Related Work
	5 Conclusion
	References

