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Abstract
Feature models are widely used for specifying the valid configura-
tions of product lines. Many automated analyses on feature models
have been considered, but they often depend on computationally
complex algorithms (e.g., solving satisfiability problems). To identify
and develop efficient reasoning engines, it is necessary to compare
their performance on practically relevant feature models. How-
ever, empirical evaluations on feature-model analysis often suffer
from the limitations of available feature-model datasets in terms
of transferability. A major problem is the accessibility of relevant
feature models as they are scattered over numerous publications. In
this work, we perform a literature survey on empirical evaluations
that target the performance of feature-model analyses to examine
common evaluation practices and collect feature models for future
evaluations. Furthermore, we examine the suitability of the derived
collection for benchmarking performance. To improve accessibility,
we provide a repository including all 2,518 identified feature models
from 13 application domains, such as system software.
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1 Introduction
Feature models are commonly used to specify the valid configura-
tions of a product line [6, 8, 51]. Typically, a feature model consists
of a set of features and dependencies between those features [51].
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A product of the product line is identified by a configuration of
features that adheres to all specified dependencies. Manually ana-
lyzing feature models is generally infeasible [8, 102]. Even simpler
problems, such as checking whether a given configuration satis-
fies all imposed constraints, require all dependencies of a feature
model to be considered. Thus, many automated analyses have been
proposed to support various activities in product-line engineering,
such as modeling [8], configuring [55, 84], and testing [54, 79].

Many feature-model analyses depend on solving computation-
ally complex problems [106]. In particular, feature models are typi-
cally translated to propositional formulas, so their analyses can be
reduced to Boolean satisfiability (SAT) [8, 63] or model-counting
(#SAT) [36, 56, 107] problems, which are computationally com-
plex [34, 106, 113]. As feature models are often analyzed in interac-
tive settings [1, 9, 70], short response times of reasoning engines
(e.g., SAT solvers) are in demand. The efficiency (w.r.t. resource con-
sumption) of tools is particularly relevant when dealing with very
complex configurable systems, such as the Linux kernel [66, 109].

Building efficient reasoning engines requires empirical evalua-
tions that are transferable to other instances of the targeted scope.
Transferability depends on representative datasets [28, 45], as the
performance of reasoning engines highly depends, amongst others,
on the analysis and model instance [57, 63, 105]. Without compar-
isons on feature models that reasonably reflect tool performance in
practice, it is difficult for practitioners to select the most promising
tool and for tool developers to optimize their algorithms.

Using non-representative datasets for benchmarking performance
may lead to empirical evaluations that lack external [117] and eco-
logical [3, 50] validity and cannot be transferred into practice [4, 42]
due to several aspects. First, it has been observed that runtimes
of reasoning engines, such as SAT solvers, often differ vastly be-
tween artificial and real-world formulas [4, 52, 63]. Second, when
an empirical evaluation includes only few feature models, it is
unclear whether any of its conclusions are transferable to other
feature models. This transferability is particularly questionable if
the considered feature models are all similar regarding certain char-
acteristics, such as structure (e.g., number of features or number of
constraints) and application domain (e.g., automotive or operating
system). Third, comparing empirical evaluations is difficult if they
use varying datasets, even if those datasets contain multiple real-
world instances. Currently, different authors typically use varying
datasets for empirical evaluations [10, 14, 38, 54, 56, 81, 89, 97, 105]
with only small or even no overlap to models from other work.
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Identifying relevant feature models for an empirical evaluation
is a high-effort task. Publicly available feature models are scattered
over various publications [2, 11, 46, 52, 54, 78, 81, 84, 86, 87, 97].
Also, available feature-model repositories (e.g., SPLOT [72]) focus
on exchange instead of benchmarking [29, 70, 72] and contain a
large share of artificial and small feature models [70, 72], which
are less suitable for benchmarking performance [28]. Other avail-
able collections are limited to few [52, 76] or even exactly one
domain [11, 53, 86, 114].

In this work, we aim to collect feature models used across ex-
isting empirical evaluations of feature-model analyses and make
them more accessible for researchers and practitioners. To this end,
we provide a comprehensive dataset including available feature
models from previous publications. We envision that our collection
improves the external and ecological validity of future empirical
evaluations. Our contributions towards that goal are the following:
Systematic Literature Survey (Section 3).We performed a sur-
vey examining overall 4,475 publications to identify work that
performs empirical evaluations on feature-model analyses.
Analysis of Common Practices (Section 4). We gather insights
on publishing behavior, used feature models, and employed reason-
ing engines to analyze common practices in feature-model evalu-
ations. Our observations confirm that having an easily accessible,
comprehensive collection of feature models yields benefits.
Feature-Model Collection (Section 5.1). We gather feature mod-
els from replication packages or similar data repositories provided
by identified publications. Overall, our collection contains 2,518
feature models from 13 application domains.
Accessible Repository (Section 5.2).Wemake each feature model
publicly available [21] in (1) the originally published format, (2) the
Universal Variability Language (UVL) [103], and (3) as a proposi-
tional formula in conjunctive normal form (CNF) expressed in the
DIMACS format [90]. For each feature model, we provide various
information on its structure, semantics, and origin. For easy usage,
our repository comes with several functionalities for extracting
partial datasets (e.g., from specific domains, formats, or sizes).
Evaluation Against Requirements (Section 6).We evaluate our
dataset regarding its suitability for empirical evaluations consider-
ing requirements specified for benchmarks in other domains [45].

2 Background
In the following, we give a brief overview on feature models, rep-
resentations for feature models, and analyses on feature models.
For a more detailed context, we refer to other relevant literature
for definition of feature models [6, 51], representations [7, 24] and
analyses on feature models [8, 69, 106].

2.1 Feature-Model Representations
A feature model specifies the set of valid configurations for a
product line [6, 8]. Typically, a feature model 𝐹𝑀 = (𝐹,𝐶) is de-
fined as a set of features 𝐹 and constraints 𝐶 over those features.
The constraints implicitly specify the set of valid configurations
for the feature model. Various representations for feature models
have been proposed, differing mostly in their syntax and visual-
ization [6, 48, 51, 92, 103]. However, some languages also support

Ice Cream

Container

Cup Cone

Flavor

Chocolate Lemon Sorbet

Vegan Wafer

Feature

Mandatory

Optional

Alternative

Or Group

Chocolate⇒ ¬ Vegan

Wafer⇒ Cup

Figure 1: Running Example as a Feature Diagram

different language constructs with varying levels of expressive-
ness [48, 108]. Often, constraints and features are limited to Boolean
logic (i.e., features are selected or deselected) [8, 54, 54, 73, 80, 105].
Some feature-model extensions enrich the domain of possible val-
ues by supporting numerical features [76, 108] or provide more
complex constraints [102, 108].
Feature Diagrams A feature diagram consists of a hierarchi-
cal tree structure over the features and additional cross-tree con-
straints [92], typically in propositional logic [51, 70, 103]. Figure 1
shows a feature diagram representing a simplified ice cream product
line. Here, ice cream requires a Container and Flavor as denoted
by theirmandatory state. Ice cream may be Vegan and may contain
a Wafer as both are optional features. The Container can be exactly
one of Cup and Cone as indicated by the alternative relationship.
Furthermore, the or relationship denotes that one or more flavors
can be selected. In addition to the tree hierarchy, two cross-tree con-
straints further limit the set of valid configurations (i.e., ice cream
variants). Chocolate cannot be selected with Vegan. An additional
Wafer can only be selected with a Cup.
Universal Variability Language The Universal Variability Lan-
guage (UVL) is a textual representation for feature models [103].
Several recent and state-of-the-art tools for feature modeling sup-
port UVL [23, 31, 41, 44, 65, 101, 104]. In Listing 1, we show the run-
ning example in UVL notation. While the core level of the language
supports only propositional constraints [103], recent extensions
support more expressive constraints, such as arithmetic expressions
over numerical values or non-Boolean features [108].
Conjunctive Normal Form Feature models can be represented
as logical formulas. In particular, all feature models with only
Boolean variables and constraints can be translated into propo-
sitional logic [18]. Furthermore, there have been efforts to also
translate more complex feature models (e.g., with numerical fea-
tures) to propositional logic [76]. Formulas in conjunctive normal
form (CNF) are commonly used as input for reasoning engines, such
as SAT [12, 73, 75] or #SAT [98, 105, 112] solvers. Hence, feature
models are often expressed in CNF to simplify automated reason-
ing [11, 80]. A CNF is a conjunction of clauses, with each clause
being a disjunction of literals [58]. CNFs are typically exchanged
in the DIMACS format [90]. In Listing 2, we show an excerpt of a
CNF representing our running example in DIMACS format. The
line starting with p cnf indicates that there are 9 variables (one per
feature) and 16 clauses. Each successive line describes a clause. For
instance, -2 1 0 describes the clause (¬ Ice Cream ∨ Container).
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Listing 1: UVL
features

"Ice Cream"
mandatory

Container
alternative

Cup
Cone

Flavor
or

Chocolate
"Lemon Sorbet"

optional

Vegan
Wafer

constraints

Chocolate => !Vegan
Wafer => Cup

Listing 2: DIMACS
c 1 Ice Cream
c 2 Container
...
c 8 Wafer
c 9 Vegan
p cnf 9 16
1 0
−2 1 0
−5 1 0
1 −8 0
...
6 −5 7 0
−6 −9 0
3 −8 0

2.2 Feature-Model Analyses
Various analyses for feature models have been proposed [8, 25, 53–
55, 69, 77, 79, 97, 107]. These analyses can be employed for the
development of configurable systems, to extract metrics (e.g., for
economical estimations), or to support users during the configura-
tion process. Many analyses depend on numerous complex compu-
tations, such as SAT [8, 54, 73] or #SAT [80, 107] problems.
Anomalies An anomaly corresponds to a potentially unintended
behavior of the feature model [68, 77]. For example, a contradic-
tion in constraints of the feature model may lead to a void feature
model [8], from which no valid configuration can be derived. Other
anomalies considered in the literature are dead features (i.e., fea-
tures that appear in no valid configuration), which may require
solving numerous SAT problems [106].
Sampling With sampling, a set of valid configurations following
a specific goal is derived. With 𝑡-wise sampling, a set of valid con-
figurations is created that covers all 𝑡-wise interactions [47, 54]. For
instance, a 2-wise sample covers all interactions between each pair
of features. State-of-the-art 𝑡-wise samplers rely on repetitive SAT
calls to derive a valid sample [47, 54]. Another popular strategy is
uniform random sampling [37, 80, 88, 97]. To ensure a uniform distri-
bution, state-of-the-art random samplers typically rely on solving
#SAT problems [37, 81, 88, 97].
Feature-Model Counting Many analyses depend on feature-
model counting (i.e., computing the number of valid configurations
for a given feature model) [40, 56, 106, 107]. For example, the num-
ber of valid configurations that contain a certain feature can be
used to prioritize features during development [107]. Such analyses
often rely on numerous #SAT invocations.

3 Literature Survey
With our literature survey, we aim to (1) collect a comprehensive
dataset of feature models used as test instances in empirical evalua-
tions on feature-model analysis and (2) analyze common practices
in evaluations to further inspect the demand for such a collection.
In the following, we present our methodology to identify work of
interest, collect feature models, and extract relevant information.

3.1 Goals
The main goal of our survey is collecting a feature-model dataset
that improves ecological [50] (i.e., transferability to real world) and
external validity for benchmarking performance of reasoning en-
gines. Following considerations for selecting benchmark instances
from other domains, namely graphs [45], machine learning [61],
face recognition [35], and logic [26, 28], we consider three proper-
ties relevant for feature models in the context of benchmarking.
P1 Heterogeneity. A homogeneous (regarding domain and struc-
ture) dataset may limit the transferability [45]. Feature models
are used to model variability in various domains, such as automo-
tive [56], system software [11], and finances [27]. As results cannot
be necessarily transferred between domains [4, 28, 61], we aim
to collect feature models from many domains. Also, instances in
benchmark datasets should be heterogeneous considering structural
properties [45], such as number of features or tree hierarchy.
P2 Suitability for Performance Tests. There are various aspects of
datasets that might be relevant for performance tests depending on
the use case. We consider two dimensions here that we found rele-
vant for the evaluation of reasoning engines for own evaluations
and for evaluations many we examined during our survey. First,
to effectively select and improve algorithms, we need sufficiently
hard instances (here: feature models) that show the impact of op-
timizations [28, 45]. Feature models that are easy to analyze with
unoptimized algorithms may, thus, be less relevant for a collection
that focuses on benchmarking. While the hardness depends on
various properties, existing evaluations suggest that feature models
with very few features are typically not hard for most feature-model
analyses [25, 39, 89, 105]. As feature models with fewer than 100
features appear to be computationally easy for popular automated
reasoning engines [89, 102, 105, 106], we only consider feature mod-
els with at least 100 features. Collecting all feature models available,
including very small ones, would considerably increase the required
effort and various smaller feature models are already available in
the widely used SPLOT repository [72]. We apply this filter of fea-
ture models with at least 100 features only for the collection. In the
survey, we also examine work with smaller feature models. Second,
a common goal of performance tests is to accurately identify per-
formance differences of tools which requires a sufficient number of
input instances [35], which are currently laborious to collect.
P3 Transferability. The results of evaluations should be transferable
into practice [45, 115]. It has been shown that reasoning engines of-
ten perform substantially different on artificial instances compared
to real-world instances [4, 52, 63]. While empirical evaluations
on carefully designed artificial models can still be useful, we only
consider real-world feature models to ensure ecological validity [50].

In addition to collecting feature models, we aim to use our survey
to gather insights on the usage of feature models and reasoning
engines in empirical evaluations. We envision that our observations
help in understanding the demands and practices in evaluations
on feature-model analysis and provide more evidence for problems
addressed in this work. Note that while we only consider feature
models satisfying P1-P3 for our feature-model collection, we also
include empirical evaluations using other feature models in the
survey to reduce the bias in our observations on common practices.
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Table 1: Search String

("feature model" OR "feature models"
OR "feature modeling" OR "feature modelling")

AND ("product line" OR "product lines" OR "product family")
AND (analy∗ OR evaluat∗ OR solver OR benchmark∗

OR configura∗ OR sampl∗ OR anomal∗ OR tool∗)

Table 2: Inclusion & Exclusion Criteria

IC1 Feature models describe a product line
IC2 Feature models are in a standardized format
IC3 Evaluation with an automated reasoning engine
IC4 Full text of publication is available
IC5 Publication was subject to peer-review

EC1 Publication is not in English
EC2 Paper was published prior to 1990

We provide insights on the considered feature models, the publish-
ing behavior, and evaluated reasoning engines with the following
three research questions:
RQ1 How often are feature models reused across evaluations?
RQ2 What kinds of feature models are evaluated?
RQ3 Which reasoning engines are used in empirical evaluations?

3.2 Literature Search
Our literature survey for identifying relevant publications consists
of two phases. In the first phase, we perform a keyword search on
popular databases to identify publications including relevant empir-
ical evaluations and, thus, feature models. In the second phase, we
perform a partial snowballing procedure on the identified papers.
Keyword Search In Table 1, we show the search string we used to
identify relevant literature. The search string is inspired by related
work also surveying automated analysis on feature models [30, 36].
The search string consists of three main parts aiming to identify
work on feature models in the product-line domain that targets a
kind of analysis or include an empirical evaluation. Using the search
string shown in Table 1, we performed a search on the following
literature databases: ACM Digital Library, IEEE Xplore, Springer
Link, and Web of Science, as we expect a reasonable coverage of
relevant publications from these databases.

After collecting the publications matching our keyword search,
we apply the inclusion and exclusion criteria shown in Table 2. Here,
we aim to only keep publications that cover an empirical evaluation
on automated reasoning for feature models in the product line
domain. As Kang et al. [51] introduced the notion of feature models
in 1990, we exclude earlier publications.
Snowballing After collecting the initial set of publications, we
aim to provide additional insights on the included feature models.
First, we aim to identify the original publications of feature models
we found. Second, we try to collect work that uses feature models
originally published in work we identified.

To identify the original publications of found feature models, we
perform partial backward snowballing. Hereby, we consider feature
models included in an empirical evaluation, but originally published

Table 3: Data Extraction Form

ID Data Purpose

D1 Feature-model publication metric RQ1
D2 Feature-model artificiality metric RQ2
D3 Feature-model size RQ2
D4 Feature-model format RQ2
D5 Feature-model domain RQ2
D6 Solver identification metric RQ3

in other work. For each publication including such a feature model,
we follow the corresponding reference to identify the original work.

To identify work that reuses publicly available feature models,
we perform forward snowballing. Hereby, we consider each work
in our literature set that originally published at least one original
feature model with 100 or more features for forward snowballing.
We extend our literature set with identified publications that include
one of those feature models in their empirical evaluation.

For both directions of snowballing, we collect the publications
using the cited by function from Google Scholar. For each identified
paper, we documented each decision for comprehensibility [22].

3.3 Data Extraction
For each identified work satisfying our inclusion and exclusion
criteria, we gather insights on the published feature models, how
they are published, and with which solvers the feature models were
analyzed. In addition to documentary information, such as authors,
title, and links, we gathered the information depicted in Table 3.
To extract the respective information, the second author searched
abstract, introduction, evaluation chapters, and respective artifacts.
If a decision about inclusion or the data extraction was unclear, a
second author also reviewed the respective work [13].

With the publication metric (D1) shown in Table 4, we examine
how the feature models are published. The metric provides insights
on the reproducibility and transferability to practice. A score 0
implies that results cannot be reproduced at all. Publications with
a score of 1 use generated, artificial models which is out of our
scope. We use scores 2 and 3 for forward and backward snowballing
(cf. Section 3.2), respectively, to identify additional publications
covering real-world feature models.

The artificiality metric (D2) indicates whether a feature model
represents a real-world system, is artificial, or of unknown origin.
We based the classifications of artificiality on the descriptions in
the manuscript. Hereby, we consider the feature model to be real-
world if (1) the authors explicitly state that it is a real-world feature
model or (2) the descriptions clearly imply that a real-world system
is considered. An example for the latter is that the authors state
that they used a Linux feature model for their evaluation. If the
information does not clearly imply the artificiality, we consider it
as origin unclear. We later use the metric D2 for identifying feature
models satisfying P3 for our dataset.

With D3-D5, we provide further insights on the feature models
by extracting their size (regarding number of features and con-
straints), original textual format, and domain (e.g., system software
or automotive). Note that we select the domain depending on the
available information by the following order (1) information by
the original authors (2) from other feature models we found with
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Table 4: Publication Metric D1

Public. Score Availability of included feature models

3 Unique feature models publicly available
2 Feature models from other publications
1 Feature models from generator
0 Feature models not published
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Figure 2: Publication Metric over Time

domain information available, or (3) classification of the authors of
this work based on content and description.

Orthogonal to analyzing the feature models, we examine the
usage of reasoning engines in empirical evaluations. With D6, we
analyze the level of information on the reasoning engine provided
by authors. We classify the level of detail in: providing a direct
link to the used version, specifying the solver name and version,
only giving the name of the solver, or not providing sufficient
information to identify the solver at all.

4 Survey Insights
With our initial keyword search, we found 3,382 publications in
total that conform to our search string. The databases were accessed
in May 2022 and, thus, include publications between January 1990
and May 2022. After applying the inclusion and exclusion criteria
and filtering duplicates, we identified a set of 345 papers relevant
for our survey. With our strategy of forward and backward snow-
balling (cf. Section 3.2), we further examined 1,093 publications.
Here, we identified 53 additional papers, resulting in an overall
set of 398 publications. For comprehensibility, sheets that indicate
our decisions for each publication regarding inclusion/exclusion
criteria and data extraction are publicly available [22].

4.1 RQ1: Publishing of Feature Models
In Figure 2, we show the results for the publication metric of the
398 publications over time. The (only)-lines indicate how many
publications satisfy exactly that score. The (overlap)-lines show
how many publications satisfy that score but possibly also others.
Overall, 39.8% of the publications contain only feature models from
other publications and 56% at least one. 17.1% of the publications
include only original feature models and 25.6% at least one. 55
(13.8%) publications published none of the feature models used in
their empirical evaluation, further 19.6% do not publish all.

In Figure 3, we show the number of times different publications
or repositories have been used in empirical evaluations. Feature

SPLOT [72]

119

LVAT [11]

23Lau [59]
22SPL Conqueror [100]

17

Lopez-Herrejon & Batory [64]
15

FeatureIDE [70]
14

Knüppel et al. [52]

11

She et al. [99]

10

Mendonca and Cowan [71]

10

Other

124

Figure 3: Feature Model Sources

models from the SPLOT [72] repository are by far the most of-
ten used with 119 different publications explicitly stating usage of
SPLOT models in their empirical evaluation.
RQ1: 19.6% of publications include unpublished feature models
in their evaluation. Hence, the feature models cannot be reused
in other empirical evaluations and comparisons are more difficult.
Results are also not fully reproducible if the feature models are not
available. 43.5% of publications do not reuse any previously publicly
available feature models.

4.2 RQ2: Feature-Model Characteristics
For 29.4% of the publications, we were not able to identify the origin
of all feature models. More than half (53.5%) of the publications
include at least one real-world feature model, but also possibly
artificial ones. 29.4% of the publications include at least one feature
model from generators. Feature models from the following gener-
ators are used most often: BeTTy [95] (29 times), the FeatureIDE
generator [111] (15 times), and the SPLOT generator [72] (14 times).

We identified a large variety of domains for which feature models
are available. However, 102 (25.6%) publications also contain at
least one feature model where we were not able to extract the
domain. Only 84 (21.1%) of evaluations include feature models
from more than three different domains. Feature models from the
system software (appearing in 82 publications), e-commerce (80),
and automotive (72) domains are included in the largest number
of publications. The numbers of occurrences for these domains
mainly come from few popular systems, such as Linux for system
software, E-Shop [72] for e-commerce, and Automotive02 [52] for
automotive, that are included in many publications.

In Figure 4, we show the smallest (x-axis) and largest (y-axis)
feature models considering their number of features for each pub-
lication. The largest considered feature model includes 1,048,576
features and is artificially generated. The smallest feature model
contains only one feature. Overall, we could extract both the mini-
mum and maximum number of features for 324 publications. 100
publications (30.8%) contain only feature models with fewer than
100 features (bottom left square). 233 publications (71.9%) contain
at least one feature model with fewer than 100 features (upper
squares). 87 publications (26.9%) contain only feature models with
at least 100 features (upper right square).
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Table 5: Results on Solver Identification

Provided Information Absolute Relative

No Information 18 9.7%
Only Name 72 38.7%
Name & Version 22 11.8%
Name & Link 56 30.1%
Name & Version & Link 18 9.7%

RQ2: Real-world feature models seem to be generally more popular
than artificial ones for empirical evaluations. However, information
on the origin of feature models is oftenmissing, whichmakes it hard
to identify real-world models. While feature models from many
domains have been used overall, only 21.1% of the empirical evalu-
ations consider more than three domains. 30.8% of the empirical
evaluations are limited to feature models with < 100 features.

4.3 RQ3: Reasoning on Feature Models
In Table 5, we show the type of information documenting the usage
of solvers for the 186 publications (46.7%) in our literature set that
explicitly report the use of a solver. The remaining publications use
ad-hoc solutions, provide no information on a possibly employed
reasoning engine, or do not consider automated reasoning at all.
The latter were added by the backward snowballing, because they
contain models used by included work. Of these 186 publications,
18 (9.7%) do not provide sufficient information to extract even the
name of the solver used. Full information (i.e., name, version, and
link) is only provided in 18 papers (9.7%).

Figure 5 shows the occurrences of the different solver classes in
evaluations over time. SAT solvers are used most in almost every
year with overall 149 publications. Solving techniques, such as CP
(48), BDDs (28), SMT (27), and #SAT (18), are also often used. The
popularity of CP dropped over time, being the second most often
used solver 2005–2016. In the last years of the considered time
period (2017–2022), CP is only the fifth most popular solver class.
13 of 18 publications considering #SAT solvers were published in
the last five years. Overall, the Java-based SAT solver Sat4J [60]
is used most (56 publications). The constraint programming (CP)
solver Choco [49] and the satisfiability modulo theories (SMT)
solver Z3 [19] are used in 30 and 20 publications, respectively.
Unidentifiable SAT solvers are also used (17). The most used binary
decision diagram (BDD) tool is JavaBDD [116] (13). For model
counting (#SAT), sharpSAT [112] is the most often used solver (8).
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RQ3: SAT solvers are generally the most popular type of solvers
for feature-model analysis with Sat4J [60] being the most used SAT
solver. Other popular classes of reasoning engines are CP solvers,
BDDs, SMT solvers, and #SAT solvers. 48.4% of publications miss
relevant information for reproducibility (e.g., version of solvers).

4.4 Threats to Validity
Validation of Selected Papers The majority of publications
in the full dataset (i.e., before applying inclusion and exclusion
criteria) were only evaluated by one author. To reduce the effect,
each time this author was not fully certain on whether a publication
should be included, another author also checked the paper. All
decisions and reasoning behind them, in terms of fulfilled or violated
inclusion/exclusion criteria, are publicly available [22].
Dependency on Other Author’s Information For identifying
properties of the feature model (e.g., the artificiality), we rely on
the information provided by the authors. We tried to verify some
properties, such as domain and artificiality, from provided arti-
facts. However, as of November 2022, the feature models for many
publications are not publicly available (anymore).
Interpretation of Authors In several cases, the classification
of feature models, regarding their artificiality and their domain,
required interpretation from the authors of this work. Hence, some
classifications possibly would have been decided differently by
other authors. To reduce the impact of our decisions, we tried to
base the decision as much as possible on information provided by
the publishers of the feature models. Further, each unclear feature
model was examined by at least two authors.
Limited Scope Our literature survey focuses on feature models
that have previously been used in evaluations. As a consequence,
we might have missed work that published relevant feature models
but does not evaluate them for any kind of feature-model analysis.
We still expect that the feature models we collected are particularly
relevant for better comparability to previous empirical evaluations.
Also, as we include feature models from many publications with
differing domains and structures, we expect that our dataset is bene-
ficial for practitioners and researchers with regard to the properties
outlined in Section 3.1. Nevertheless, we consider extending our
collection in the future as valuable.
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5 Feature-Model Dataset
The main goal of this work is to derive a feature-model collection
that can be used for comparable empirical evaluations that can be
transferred into practice. We limit our dataset to feature models
that represent a real-world system (cf. P3 in Section 3.1) and have
at least 100 features (cf. P2). Overall, we found 2,518 feature models
that match our criteria. In the following, we give an overview on
the feature models in our collection and the functionalities of the
public repository we provide [21].

5.1 Feature Models
To identify the feature models we included in our repository, we
further filtered the publications according to the properties P1-P3
defined in Section 3.1. After filtering, we identified 20 papers with
relevant, original, and publicly available feature models resulting in
overall 2,518 feature models from 41 different systems (e.g., Linux)
and 13 application domains (e.g., system software). Table 6 gives
an overview on the collected feature models. Since multiple system
software feature models were only available in CNF format, we
show the number of clauses for better comparability between the
formats. Also, for feature models only available in CNF, we consider
the number of variables as number of features in Table 6.

While we identified 102 papers with original feature models,
we excluded the majority of those, as they only included small or
artificial original models or their repositories were not available
anymore. We also collected seven feature-model histories, in which
each feature model represents an evolution step of the correspond-
ing system. In some cases, the feature model did not change after an
evolution step [85, 86], here we discarded all duplicates but the first
occurring. Without counting each feature model of histories as dif-
ferent instances, our collection contains 1,617 feature models. The
high number of security feature models comes from the AMADEUS-
dataset [114] where each feature model describes configurations
that might be affected by a cybersecurity vulnerability.

5.2 Repository
Collection of FeatureModels We provide each identified feature
model in the format of the original publication, in UVL [103], and
CNF (DIMACS).1 We added UVL to facilitate standardized feature-
model analyses, which may also rely on the feature hierarchy of
the model. The DIMACS format allows users the quick use of off-
the-shelf solvers, such as SAT [12, 73] or #SAT [105, 112] solvers. If
a feature model’s history was made publicly available, we provide
all feature models representing the history.

To enable translations from every identified format, we use the
transformation approach TraVarT [23], with UVL acting as pivot
language (i.e., intermediate language for transformations). Themost
recent version of TraVarT2 was lacking support for FeatureIDE [70],
AFM [9], DIMACS, and SXFM [72], so we extended TraVarT with
respective transformations.3 For Clafer [48], we could not iden-
tify a transformation to one of the supported formats. However,
every feature model we found in Clafer was also available in a

1Few feature models violated the respective language specification and could not be
fully translated to UVL and DIMACS.
2https://github.com/SECPS/TraVarT
3https://zenodo.org/doi/10.5281/zenodo.11654485

format supported by TraVarT [11, 52], and we used those instead.
For translation to CNF, our TraVarT extension internally uses a dis-
tributive transformation implemented in FeatureIDE [70] (v3.9.2),
which preserves logical equivalence and introduces no artificial
variables [58]. As some formats have different levels of expressive-
ness, the conversions to UVL or CNF may result in information
loss [24]. In particular, our collection includes feature diagrams
as presented in Section 2.1, extended feature models which con-
tain non-functional attributes [8], and cardinality-based feature
models [17]. However, in our survey we did not identify a single
feature model that included constructs that cannot be semantically
equivalently (i.e., represents same configuration space) represented
in CNF or UVL.4 The UVL parser [108] (also used in TraVarT) sup-
ports semantic equivalence preserving conversions to Boolean logic,
which enables converting more complex expressions into CNF. In
some cases, SXFM models included the same feature name twice
which is not allowed in UVL [72]. Here, we resolve the duplicate
feature by introducing a new feature and a respective cross-tree
constraint (i.e., for duplicate feature 𝑓 rename duplicate to 𝑓 ′ with
𝑓 ⇐⇒ 𝑓 ′). Also, CNF does not support storing attributes, so they
are discarded. In both cases, we have syntactical loss (i.e., same
configuration space but different representation) [24].
Meta-Data on Feature Models For each feature model included
in our repository, we provide a variety of different metrics and
general information. Table 7 shows an excerpt of the different types
of metrics we include in the repository separated into three cate-
gories. First, we provide structural metrics, such as the number of
features. Second, we include metrics which require some semantic
analyses of the feature model (e.g., number of valid configurations).
We compute the structural and semantic metrics with a script based
on the FeatureIDE library [70].5 Third, we present information on
the origin of the feature model, such as references (DOI) to the
original work or the tooling used for conversion.
Dataset Extraction As the repository already contains 2,518
feature models today, using all of them for an empirical evaluation
may be too costly. An analysis may also be only relevant for certain
domains (e.g., software). In this case, users of our feature-model
dataset may want to use only a subset of the feature models. To
ease extracting datasets depending on the use case, we provide a
Python-based script that supports to filter feature models based on
the provided meta-data. Users can filter based on various properties,
such as name, tags, structure, domain, or whether they are part
of a history. For instance, a user of the repository may derive all
feature models with more than 1,000 features from the software or
automotive domain. The extractor then provides a separate instance
with the feature models matching the criteria, statistics over this
dataset, and a configuration file for reusing the exact same dataset.
Dataset Configurations The extractor allows the user to derive
a feature-model dataset based on configuration files. Mainly, those
configurations are used to describe datasets employed in other
empirical evaluations to enable easier comparability. The config-
urations include information on applied filters (e.g., domain), list

4Note that the featuremodels we foundmay be already simplified. For instance, tri-state
features from KConfig [15] may be simplified to Boolean features [82].
5https://zenodo.org/doi/10.5281/zenodo.11653333

https://github.com/SECPS/TraVarT
https://zenodo.org/doi/10.5281/zenodo.11654485
https://zenodo.org/doi/10.5281/zenodo.11653333
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Table 6: Feature Models Included in Our Repository

Domain Feature Models Systems Histories Features Clauses Origins

Automotive 5 2 1 2,513–18,253 666–2,833 [52, 53]
Business Software 1 1 0 1,920 59,044 [84]
Cloud 1 1 0 131 14 [33]
Database 1 1 0 117 282 [43]
Deep Learning 2 1 0 3,296–6,867 9–76 [32]
E-Commerce 2 2 0 17–2,238 0 [59, 84]
Finance 13 4 1 142–774 4–1,148 [2, 72, 77]
Games 1 1 0 144 0 [94]
Hardware 2 2 0 172–364 0–12 [72, 102]
Navigation 2 2 0 103–145 2–13 [72]
Security 1,464 2 0 101–4,351 1–8,138 [72, 114]
System Software 1,025 21 5 179–80,258 26–767,040 [2, 11, 52, 72, 78, 81, 83, 85–87]
DSL Development 1 1 0 137 1 [72]

Overall 2,518 41 7 101–80,258 0–767,040

Table 7: Excerpt of Provided Metrics

Structure Semantic† Origin

#Features #Valid Configurations Publication (DOI)
#Constraints Void Source (URL)
Tree Depth #Dead Features Conversion Tool
#Leaf Features #Atomic Sets Domain
Constraints Density #Core Features Keywords

† For few feature models, metrics are missing due to scalability issues.

of used feature models, and information on the performed experi-
ments. For now, we include some manually created configurations
that describe datasets in existing empirical evaluations. We created
configurations for different types of analyses, namely 𝑡-wise sam-
pling [54], uniform random sampling [81], validity checks [63], and
feature-model counting [105]. We envision that future publications
can publish their configuration and reference it.6

Dataset Maintenance In the future, we aim to maintain and
update the collection regarding the following aspects. First, we
ensure that the collection is long-term publicly available. Second,
we continue to add feature models that meet our criteria. Third, we
review proposals for new additions. Fourth, we update the meta-
data about the models after new additions.

6 Evaluating Against Requirements
In this section, we aim to provide insights on the suitability of our
dataset for empirical evaluations on performance of feature-model
analyses. In particular, we examine different indicators on how well
our dataset satisfies our requirements P1–P3 which we adopted
from benchmark datasets from other domains (cf. Section 3.1).

6.1 P1: Heterogeneity
In this section, we examine the heterogeneity of our dataset regard-
ing structural properties of the feature models. Figure 6 shows the
following metrics for each feature model: the number of features,

6Example dataset from Liang et al. [63]: https://github.com/SoftVarE-Group/feature-
model-benchmark/blob/master/paper_configs/Liang2015.json

number of clauses, the connectivity7, share of features appearing in
cross-tree constraints (ECR [74]), share of features that are optional
(i.e., neither core nor dead), and the number of configurations. The
colors of the markers indicate the domain of the feature model.
Overall, the collection covers a wide range for every metric with,
for instance, 101–800,258 features, 0–767,040 clauses, 101–101534
valid configurations. Checking the similarity over various metrics,
feature models from different systems structurally differ in most
cases. However, feature models from similar systems are often more
similar regarding structural metrics. In particular, feature models
within the same history from the systems FinancialServices, uClibc,
BusyBox, Fiasco, and Linux, respectively, are very similar based on
various extracted metrics. Those similarities are already observable
on the example metrics shown in Figure 6, as the histories form
clusters in the diagrams. For instance, the standard deviation of
the number of features over all feature models normalized by the
mean is 4.5, while in a given history it is at most 0.32. Similarly, for
constraints the overall value is 5.4 and for the different histories at
most 0.44. Furthermore, the CDL feature models [52], which are not
a history but different variants with a shared core, are also highly
similar.
P1: Overall, our dataset covers a wide range of structural proper-
ties and most models are considerably different regarding those
properties. Still, there are some clusters of feature models with very
similar structural properties. Hence, it may yield benefits to only
use some candidates of those similar models for evaluations.

6.2 P2: Benchmark Suitability
Here, we examine the suitability of our dataset for benchmarking
regarding the two aspects for P2 introduced in Section 3.1. First,
we check if there are hard (i.e., induce long runtimes for some
solvers) instances that can be used for effectively improving existing
algorithms. Second, we evaluate if our dataset is sensitive enough to
detect significant differences between the performances of different
tools. To this end, we measure runtimes of differently performing
tools, apply common statistical tests, and examine the resulting
p-values. Since many feature model analyses rely on SAT and #SAT

7The connectivity describes the average number of literals a feature is connected to
via constraints.

https://github.com/SoftVarE-Group/feature-model-benchmark/blob/master/paper_configs/Liang2015.json
https://github.com/SoftVarE-Group/feature-model-benchmark/blob/master/paper_configs/Liang2015.json
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Figure 6: Structural Properties of Dataset

solving [106], we analyze solvers of both categories. In particular,
for SAT, we use Kissat and SBVA-Cadical which performed best
at the latest (2023) SAT competition [28] and Glucose which is
another popular SAT solver employed in Sat4J [60] and in relevant
variability modelling tools [31, 70]. For #SAT, we use the three best
performing #SAT solvers from the model counting competition
2023.8 The replication package for the runtime measurements is
publicly available.9

Figure 7 shows the median10 runtimes on our feature-model
dataset of the SAT solvers in the first row and of the #SAT solvers
in the second row. Kissat is the only solver which did not hit a sin-
gle timeout. Hence, for all solvers but Kissat there is considerable
potential for further optimizations and instances to evaluate po-
tential improvements. Even for Kissat, there are several instances
with between 0.1s and 1s of runtime which could still be used for
tweaking its performance. As many feature-model analyses rely
on numerous SAT invocations [106], even the short runtimes for a
single Kissat invocation can lead to long response times.

To check the significance of differences between tools, we ap-
plied a Friedman test with a post-hoc Conover [16] respectively for
both types of solvers. For each pair, we found clearly significant
differences with p-values smaller than 10−120. We conclude that
the dataset enables significant runtime comparisons even for only
smaller differences. For instance, the close difference between over-
all runtimes of d4 (96.3 minutes) and Ganak (103 minutes) is still
clearly significant (𝑝 < 10−193).
P2: Our dataset appears to satisfy both specified requirements
for being suitable for benchmarking. First, there are several hard
instances that can be used for further optimization. Second, the
dataset can be used to identify differences between solvers with
high statistical power (i.e., very small p-values).

8https://mccompetition.org/assets/files/2023/MC2023_awards.pdf
9https://zenodo.org/doi/10.5281/zenodo.11654446
10We performed three repetitions per instance for each solver.
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Figure 7: Runtime of Algorithms for SAT and #SAT

6.3 P3: Transferability
We only considered real-world feature models for our dataset. As
described in Section 3.3, we chose a rather conservative approach
where we only included feature models which we could clearly
identify as real-world models or the authors explicitly declared
as real-world. Furthermore, our dataset is a superset of publicly
available datasets from other empirical evaluations. As we found in
our survey, our resulting collection contains more large, real-world
feature models and more domains compared to datasets used in
previous evaluations, which increases the probability of results
being transferable. In addition, the previous usage in automated
analyses is an indicator that the feature models in our collection
may be relevant instances for future evaluations.
P3: There are several indicators that using feature models in our
dataset may improve transferability compared to previously used
datasets. However, the representativeness of our dataset for other
feature models in practice requires further examination. Still, since
we have a superset of feature models used in previous evaluations,
we assume a higher coverage of instances relevant in practice com-
pared to previously used datasets. Thus, we expect a practical im-
pact of our collection on future evaluations.

6.4 Discussion
Overall, we found several indicators regarding our specified re-
quirements P1–P3 that our dataset can be beneficial for empirical
evaluations. First, the dataset is a superset of existing datasets used
in existing empirical evaluations and covers a wide range of struc-
tural properties and domains. Second, the included feature models
enable comparisons of the performance of different tools with high
statistical significance. Third, due to our search criteria, we only
included real-world feature models that were already used in other
empirical evaluations. Still, some insights on the heterogeneity sug-
gest that using a subset of the collection may be beneficial. We
found some clusters of variants and versions of feature models
that are structurally similar. As a consequence, we provide filters
that support extracting collections of only one feature model per
version/variant of the same cluster.

https://mccompetition.org/assets/files/2023/MC2023_awards.pdf
https://zenodo.org/doi/10.5281/zenodo.11654446
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7 Related Work
Ecological Validity for Feature-Model Analysis Ecological
validity describes the transferability of studies or evaluations to
the real world [50], which is a major motivation for our work. Ka-
mali et al. [50] also target ecological validity by analyzing the usage
of variability models in the literature. They use the literature set
collected by Galindo et al. [30] who targeted feature-model anal-
ysis. Hence, their and our survey have a similar scope. However,
Kamali et al. [50] limit their elaborations on explicit open-source
projects. As a consequence, they identify around11 80 feature mod-
els with more than 100 features, while we identified 1,617 models,
not counting histories. In contrast to our work, Kamali et al. [50]
also do not provide an accumulated collection of feature models.
Feature-Model Collections Several repositories providing a col-
lection of feature models are available [11, 29, 70, 72, 91, 103]. Ac-
cording to the insights from our literature survey, feature models
from the SPLOT [72] repository are most commonly used. Still,
SPLOT contains rather small real-world feature models with 98.3%
(17 out of 997) having less than 100 features. The largest real-world
SPLOT feature model contains 451 features. In contrast to our col-
lection, none of the available repositories target datasets that rea-
sonably reflect performance in practice, but target the exchange of
all kinds of feature models, including academic models.

In several publications, the authors published considerable collec-
tions including real-world feature models [5, 11, 52, 53, 76, 86, 114].
However, these datasets are limited to only few [52, 76] or even
exactly one domain [11, 53, 86, 114]. As our collection is a super-
set of existing datasets, we cover various domains (13) and feature
model sizes (101-80,528 features). Additionally, our collection comes
with tool support to simplify extracting a dataset tailored to the
requirements of an empirical evaluation.
Benchmarking Efforts Several publications consider bench-
marking in the product-line domain [20, 95]. However, neither
of the available benchmarks targets real-world feature models from
multiple domains. The benchmarks either (1) use generated feature
models [95], (2) focus on entirely different scopes [20, 67, 93, 118],
and/or (3) are limited to a single domain or even system [67, 118].
Surveys on Feature-Model Analysis Several other surveys tar-
get work on feature-model analyses [8, 30, 36, 62, 96, 107, 110].
These surveys focus on the analyses and provide, amongst others,
formal specifications [8, 36, 107], possible algorithms [36, 107] or
categorizations of analyses [62, 96, 107, 110]. In contrast, we focus
on the feature models by identifying properties of the feature model,
examining the reuse of feature models across empirical evaluations,
and gathering the feature models for our collection.
Benchmarks in Other Domains Automated reasoning engines
are typically evaluated on collections of logical formulas [12, 26,
28, 112]. In particular, the SAT competition [28] and the model-
counting competition [26] provide large datasets to compare solvers.
These collections consist of randomly generated instances and
SAT encodings of popular complex problems, such as graph color-
ing [26, 28]. However, these collections do not include instances rep-
resenting feature models or configurable systems. Our work could
be a stepping stone towards including feature-model instances in

11The number is not exact, as information for few feature models is missing.

future contests. Collections for benchmarking are also used in other
domains, such as graphs [45], machine learning [61], and face recog-
nition [35]. While the respective instances are not closely related
to feature models, we examined their work to derive benchmarking
requirements also relevant for our scope (cf. Section 3.1).

8 Conclusion
Identifying relevant feature models for benchmarking is tedious as
they are scattered across numerous publications. Empirical eval-
uations often include only small feature models and are typically
limited to few domains. Also, the sets of feature models used in
different evaluations often do not intersect much, which limits ex-
ternal validity and hinders comparability. In this work, we perform
a literature survey to gather a collection of real-world feature mod-
els for benchmarking. Our dataset contains overall 2,518 real-world
feature models with at least 100 features each, made available in
the original format, UVL, and DIMACS. We also provide various
insights on structure, semantics, origin, and suitability for bench-
marking of these feature models. Our observations on the latter
suggest that our dataset may be valuable for future evaluations.

In the future, multiple authors plan to maintain the dataset and
extend it with new feature models. We also invite researchers and
practitioners to contribute models. Extending the repository with
data beyond the feature model (e.g., source code) may also be valu-
able for related analyses. To simplify access, we aim to add our
dataset to an existing repository (e.g., UVLHub [91]). Furthermore,
we plan on extending recommendations for feature models to in-
clude for specific use-cases based on model quality, general user
ratings, heterogeneity, and domain.
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