
How Easy is SAT-Based Analysis of a Feature Model?
Elias Kuiter

kuiter@ovgu.de

University of Magdeburg, Germany

Tobias Heß

tobias.hess@uni-ulm.de

University of Ulm, Germany

Chico Sundermann

chico.sundermann@uni-ulm.de

University of Ulm, Germany

Sebastian Krieter

sebastian.krieter@uni-ulm.de

University of Ulm, Germany

Thomas Thüm

thomas.thuem@uni-ulm.de

University of Ulm, Germany

Gunter Saake

saake@ovgu.de

University of Magdeburg, Germany

ABSTRACT
With feature-model analyses, stakeholders can improve their under-

standing of complex configuration spaces. Computationally, these

analyses are typically reduced to solving satisfiability problems.

While this has been found to perform reasonably well on many

models, estimating the efficiency of a given analysis on a given

model is still difficult. We argue that such estimates are necessary

due to the heterogeneity of feature models. We discuss inherently

influential factors and suggest potential algorithmic solutions.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
Theory of computation → Automated reasoning.

KEYWORDS
feature modeling, SAT solving, algorithm selection

ACM Reference Format:
Elias Kuiter, Tobias Heß, Chico Sundermann, Sebastian Krieter, Thomas

Thüm, and Gunter Saake. 2024. How Easy is SAT-Based Analysis of a Feature

Model?. In 18th International Working Conference on Variability Modelling of
Software-Intensive Systems (VaMoS 2024), February 07–09, 2024, Bern, Switzer-
land. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3634713.

3634733

1 INTRODUCTION
Feature models [7, 10, 21] describe the user-visible characteristics,
known as features, of software product lines (SPLs) [6, 45]. A config-
uration of features is valid when it fulfills all feature dependencies,

known as constraints [6]. The valid configurations of a featuremodel

usually form large configuration spaces [21, 50], which quickly

become difficult to comprehend. Thus, automated feature-model

analyses have been proposed [2, 8, 9, 36, 46, 60], with which stake-

holders can improve their understanding about a feature model (e.g.,

to spot modeling errors or guide business decisions). Furthermore,

feature-model analyses enable more advanced SPL analyses, which

support several activities in the software development life cycle

(e.g., design [8, 52], implementation [32, 56], testing [29, 35], and

economical estimates [15]).

This work is licensed under a Creative Commons Attribution International

4.0 License.

VaMoS 2024, February 07–09, 2024, Bern, Switzerland
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0877-0/24/02.

https://doi.org/10.1145/3634713.3634733

To implement such analyses, feature models are often repre-

sented as propositional formulas [6, 7, 39, 47], which are then

passed to off-the-shelf analysis tools, such as satisfiability (SAT)

solvers [36, 38]. This approach is usually tractable in practice, al-

though SAT is NP-complete. In two well-known publications, this

phenomenon has been empirically investigated on large collections

of feature models; concluding that “SAT-based analysis of (large

real-world) feature models is easy” [31, 36].

While many studies and experiences confirm this overall sen-

timent, feature models are also known to be heterogeneous (e.g.,

in terms of origin, domain, and size) [5, 50]. Indeed, there are sev-

eral large feature models (e.g., the Linux kernel, Freetz-NG, or

Automotive02) that still challenge state-of-the-art analysis tech-

niques [28, 42, 44, 50, 51, 55]. This is because not all analyses are

equally tractable: For example, while a single call to a SAT solver is

usually cheap to compute, some analyses are difficult or impossible

to phrase in terms of a single SAT call [51]. Instead, they either

require several SAT calls (e.g., reasoning about edits [57], core/dead

features [12, 20], type-checking [22, 23]), specialized solvers (e.g.,

#SAT [50] or AllSAT [18]), or algebraic reasoning (e.g., slicing [1, 26]

or differencing [2]). Thus, a more conservative interpretation of

previous results might be: “many SAT-based analyses onmost (large
real-world) feature models are comparably easy”.

However, this naturally begs several questions: Which analy-

ses are easy on which feature models? What does easy mean for

feature-model analysis?What factors influence the answers to these

questions? We argue that it is time to pivot from a class-based point

of view on feature-model complexity to an instance-based perspec-

tive. That is, instead of making sweeping statements about the

entire class of feature models, it may be more illuminating to try to

estimate the difficulty of computing a given analysis for a given fea-

ture model (potentially taking into account other influential factors).

With this shift in perspective, we aim to foster a more nuanced dis-

cussion of feature-model complexity in the SPL community, which

takes the heterogeneity of feature models into account. Both per-

spectives are cases of feature-model meta-analysis, which provides

a general framework for talking about properties of feature-model

analyses. In the following, we outline our idea of meta-analysis, the

shift in perspective we propose, and initial suggestions for working

towards instance-based meta-analysis.

2 FEATURE-MODEL META-ANALYSIS
We define feature-model meta-analysis as the practice of asking

(and answering) questions about feature-model analyses as follows:

• First, one must ask a question about a (non-)functional property

of feature-model analysis. The actual analysis results are not of

https://doi.org/10.1145/3634713.3634733
https://doi.org/10.1145/3634713.3634733
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3634713.3634733
Elias Kuiter
This is the author's version of the work. The main goal of this PDF is to give up-to date comments and information around the work, including follow-up work and already identified mistakes.

If you have any questions or comments, please get in contact with the authors.



VaMoS 2024, February 07–09, 2024, Bern, Switzerland E. Kuiter et al.

interest here, instead one asks for correctness or efficiency (e.g.,

regarding runtime, memory usage, or energy consumption). The

question fixes some factors (e.g., feature model and analysis),

while leaving others blank (e.g., algorithm and solver).

• Second, one must define criteria to answer the question (either

exactly or an estimate) and propose an algorithm to do so.

Here, we discuss two opposed kinds of meta-analysis: class- and
instance-based meta-analyses. While this distinction is not clear-cut,

it serves well for demonstrating the shift in perspective we propose.

2.1 Class-Based Meta-Analysis
Class-based meta-analyses ask questions about a whole class of

feature models and/or analyses. Thus, they can illuminate the feasi-

bility of computing certain analyses on certain models. In previous

work, several questions of this kind have been asked (and answered).

“Is SAT-based analysis of feature models easy?” This is an

open meta-analysis question that binds few factors and can only

be answered with “yes” or “no”. Mendonça et al. [36] actually pose

and answer a more specific variant of this question: They focus on

artificial feature models and, although acknowledging repeated SAT

calls, they perform only one SAT call. They conclude that analysis

is indeed “easy” because they find no phase transition.

“Is SAT-based analysis of large real-world feature models
easy?” Analogously, Liang et al. study the feasibility of singular

SAT calls on feature models of several open-source SPLs, which are

specified using the KConfig language [31]. They give new insights

as to why determining feature-model satisfiability is comparably

easy—still, they do not consider complex feature-model analyses or

distinguish difficulty on a per-instance basis.

2.2 Instance-Based Meta-Analysis
The abovemeta-analyses have likely been helpful in establishing the

widespread use of SAT solvers for feature-model analyses. However,

they neither acknowledge the vast gap between feature models that

are computationally “simple” (e.g., the graph product line [33]) or

“complex” (e.g., the Linux kernel [42, 55]), nor do they distinguish

how this computational complexity may depend on the computed

analysis (or other, more subtle factors). We discuss briefly how to

both ask and answer instance-based meta-analysis questions.

Asking Meta-Analysis Questions To acknowledge the differ-

ences in complexity between feature models, we can ask more

precise questions about analysis tasks, such as: “How much time
does analysis Xneed on featuremodel Ywhenusing solver Z?”
or “Which algorithm is most memory-efficient for comput-
ing X on Y?” These questions still leave room for filling in details

(e.g., system specifications), so they can only be estimated—but they

will yield more useful answers for a given use case than the more

sweeping statements obtained with class-based meta-analyses.

The appropriate level of parametrization depends on the use case

and represents a trade-off: Binding more factors allows for more

accurate estimates (improving internal validity); binding less factors

allows for more general settings (improving external validity) [49].

As a starting point for posing interesting questions, we list several

factors that we know or suspect to influence the correctness or

efficiency of feature-model analyses:

• Feature Model [50]: origin [5], domain, size, and expressiveness

of constraints [24, 54]

• Propositional Encoding [6, 7, 47]: extractor (e.g., for KConfig

specifications [16, 17, 42]), non-Boolean variability [11, 40, 43],

CNF transformation [28, 34], and preprocessing

• Analysis: class (consistency, cardinality, enumeration, or al-

gebraic) [51], the question it answers [8, 52], the chosen algo-

rithm [12, 20], and its implementation

• Solver (if needed): class (e.g., SAT [36], #SAT [50], AllSAT [18],

or VSAT [59]), solver parametrization (e.g., exact or approximate,

optional preprocessing steps), name/version

• Knowledge Compilation (if needed): class (e.g., BDD [19, 37,

55] or d-DNNF [53]), name/version

• Prior Information (if given): existing analysis results, revisions

(incremental analysis [25]), and interfaces [48]

• Execution Environment: CPU, RAM, and deep variability [30]

It is one purpose of feature-model meta-analysis to study the influ-

ence of these (and other) factors and how they interact. To do so,

we must find techniques to answer meta-analysis questions.

Answering Meta-Analysis Questions Ideally, we want to an-

swer instance-based meta-analysis questions without actually com-

puting the analysis in question, which can be costly or even infeasi-

ble. Instead, one usually tries to investigate surrogate metrics (e.g.,
on an ordinal or interval scale) to estimate analysis complexity. For

example, we can characterize feature models using metrics:

• SyntacticMetrics [50]: number of features, variables, constraints,

clauses, literals; constraint size, density [31]

• Semantic Metrics [3, 4]: phase transition [36], community struc-

ture [41], self-similarity

While syntactic metrics are easy to compute, they seem to allow

for rough estimates at most [19, 50]. Semantic metrics are probably

better indicators for inherent complexity of a feature model, but are

themselves usually NP-hard and could therefore be approximated.

Once we have determined suitable metrics for studying a meta-

analysis question, we must also choose an algorithm to answer

it. To this end, previous work uses simple criteria (e.g., “yes/no”

for a phase transition [36]) or otherwise handcrafted models and

hypotheses (e.g., the number of features correlates with analysis

time [50]). Alternatively, machine learning techniques might be

applicable, but we are not aware of any studies in this direction.

3 CONCLUSION
By pivoting from class- to instance-based meta-analysis, many

directions for discussions and future work open up: What meta-

analysis questions are worth asking, what factors are relevant,

and how do they interact? Is feature-model complexity intrinsic,

regardless of the chosen analysis or solving technique? When do

knowledge compilation and incremental analysis pay off?

By improving our ability to answer instance-based meta-analysis

questions, we lay a foundation for implementing meta-analyzers
that (semi-)automatically choose the best (e.g., fastest) analysis plan
(i.e., algorithm, solver, . . . ) for a given analysis task, analogous to

what portfolio solvers do for SAT [58]. Thus, analysis plans render

analyses into first-class objects, which we can precisely describe,

manipulate, and optimize; as has been done for databases [14] and,

to some degree, also been proposed for SPL analyses [13, 27].



How Easy is SAT-Based Analysis of a Feature Model? VaMoS 2024, February 07–09, 2024, Bern, Switzerland

REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. B. France. 2011. Slicing Feature Models. In

ASE. IEEE, 424–427.
[2] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle. 2012. Feature

Model Differences. In CAiSE. Springer, 629–645.
[3] R. Adamy, E. Kuiter, andG. Saake. 2023. Exploiting Structure: A Survey andAnalysis

of Structures and Hardness Measures for Propositional Formulas. Technical Report.
University of Magdeburg. https://doi.org/10.32388/7U1PFG Qeios:7U1PFG

[4] T. N. Alyahya, M. E. B. Menai, and H. Mathkour. 2022. On the Structure of the

Boolean Satisfiability Problem: A Survey. ACM Comput. Surv. 55, 3, Article 46
(2022). https://doi.org/10.1145/3491210

[5] C. Ansótegui, M. L. Bonet, and J. Levy. 2009. On the Structure of Industrial SAT

Instances. In CP. Springer, 127–141.
[6] S. Apel, D. Batory, C. Kästner, and G. Saake. 2013. Feature-Oriented Software

Product Lines. Springer.
[7] D. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In SPLC.

Springer, 7–20.

[8] D. Benavides, S. Segura, and A. Ruiz-Cortés. 2010. Automated Analysis of Feature

Models 20 Years Later: A Literature Review. Information Systems 35, 6 (2010),
615–708.

[9] T. Berger and P. Collet. 2019. Usage Scenarios for a Common Feature Modeling

Language. In SPLC. ACM, 174–181.

[10] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wą-

sowski. 2013. A Survey of Variability Modeling in Industrial Practice. In VaMoS.
ACM, 7:1–7:8.

[11] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki. 2013. A Study of

Variability Models and Languages in the Systems Software Domain. TSE 39, 12

(2013), 1611–1640.

[12] A. Biere, N. Froleyks, and W. Wang. 2023. CadiBack: Extracting Backbones with

CaDiCaL.

[13] T. Castro, L. Teixeira, V. Alves, S. Apel, M. Cordy, and R. Gheyi. 2021. A Formal

Framework of Software Product Line Analyses. TOSEM 30, 3, Article 34 (2021).

[14] S. Chaudhuri. 1998. An overview of query optimization in relational systems.

In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems. 34–43.

[15] P. C. Clements, J. D. McGregor, and S. G. Cohen. 2005. The Structured Intuitive
Model for Product Line Economics (SIMPLE). Technical Report. Carnegie-Mellon

University.

[16] S. El-Sharkawy, A. Krafczyk, and K. Schmid. 2015. Analysing the KConfig Se-

mantics and its Analysis Tools. In GPCE. ACM, 45–54.

[17] P. Franz, T. Berger, I. Fayaz, S. Nadi, and E. Groshev. 2021. ConfigFix: Interactive

Configuration Conflict Resolution for the Linux Kernel. In ICSE-SEIP. IEEE, 91–
100.

[18] J. A. Galindo, M. Acher, J. M. Tirado, C. Vidal, B. Baudry, and D. Benavides.

2016. Exploiting the Enumeration of All Feature Model Configurations: A New

Perspective With Distributed Computing. In SPLC. ACM, 74–78.

[19] T. Heß, C. Sundermann, and T. Thüm. 2021. On the Scalability of Building Binary

Decision Diagrams for Current Feature Models. In SPLC. ACM, 131–135.

[20] M. Janota, I. Lynce, and J. Marques-Silva. 2015. Algorithms for computing back-

bones of propositional formulae. Ai Communications 28, 2 (2015), 161–177.
[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990.

Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21. Software Engineering Institute.

[22] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.

2011. Variability-Aware Parsing in the Presence of LexicalMacros and Conditional

Compilation. In OOPSLA. ACM, 805–824.

[23] A. Kenner, C. Kästner, S. Haase, and T. Leich. 2010. TypeChef: Toward Type

Checking #Ifdef Variability in C. In FOSD. ACM, 25–32.

[24] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, and I. Schaefer. 2017. Is There a

Mismatch Between Real-World Feature Models and Product-Line Research?. In

ESEC/FSE. ACM, 291–302.

[25] S. Krieter, R. Arens, M. Nieke, C. Sundermann, T. Heß, T. Thüm, and C. Seidl.

2021. Incremental Construction ofModal Implication Graphs for Evolving Feature

Models. In SPLC. ACM, 64–74.

[26] S. Krieter, R. Schröter, T. Thüm, W. Fenske, and G. Saake. 2016. Comparing

Algorithms for Efficient Feature-Model Slicing. In SPLC. ACM, 60–64.

[27] E. Kuiter, A. Knüppel, T. Bordis, T. Runge, and I. Schaefer. 2022. Verification

Strategies for Feature-Oriented Software Product Lines. In VaMoS. ACM, 12:1–

12:9.

[28] E. Kuiter, S. Krieter, C. Sundermann, T. Thüm, and G. Saake. 2022. Tseitin or not

Tseitin? The Impact of CNF Transformations on Feature-Model Analyses. In ASE.
ACM, 110:1–110:13.

[29] J. Lee, S. Kang, and D. Lee. 2012. A Survey on Software Product Line Testing. In

SPLC. ACM, 31–40.

[30] L. Lesoil, M. Acher, A. Blouin, and J.-M. Jézéquel. 2021. Deep Software Variability:

Towards Handling Cross-Layer Configuration. In VaMoS. ACM, 10:1–10:8.

[31] J. H. Liang, V. Ganesh, K. Czarnecki, and V. Raman. 2015. SAT-Based Analysis of

Large Real-World Feature Models Is Easy. In SPLC. Springer, 91–100.
[32] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer. 2013.

Scalable Analysis of Variable Software. In ESEC/FSE. ACM, 81–91.

[33] R. E. Lopez-Herrejon and D. Batory. 2001. A Standard Problem for Evaluating

Product-Line Methodologies. In GCSE. Springer, 10–24.
[34] G. Masina, G. Spallitta, and R. Sebastiani. 2023. On CNF Conversion for SAT

Enumeration. arXiv:2303.14971 [cs.LO]

[35] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel. 2016. A Comparison

of 10 Sampling Algorithms for Configurable Systems. In ICSE. ACM, 643–654.

[36] M. Mendonça, A. Wąsowski, and K. Czarnecki. 2009. SAT-Based Analysis of

Feature Models is Easy. In SPLC. Software Engineering Institute, 231–240.
[37] M. Mendonça, A. Wąsowski, K. Czarnecki, and D. Cowan. 2008. Efficient Compi-

lation Techniques for Large Scale Feature Models. In GPCE. ACM, 13–22.

[38] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. 2001. Chaff:

Engineering an Efficient SAT Solver. In DAC. ACM, 530–535.

[39] D.-J. Munoz, J. Oh, M. Pinto, L. Fuentes, and D. Batory. 2019. Uniform Ran-

dom Sampling Product Configurations of Feature Models That Have Numerical

Features. In SPLC. ACM, 289–301.

[40] D.-J. Munoz, M. Pinto, L. Fuentes, and D. Batory. 2023. Transforming Nu-

merical Feature Models into Propositional Formulas and the Universal Vari-

ability Language. Journal of Systems and Software 204 (2023), 111770. https:

//doi.org/10.1016/j.jss.2023.111770

[41] Z. Newsham, W. Lindsay, V. Ganesh, J. H. Liang, S. Fischmeister, and K. Czarnecki.

2015. SATGraf: Visualizing the Evolution of SAT Formula Structure in Solvers.

In Theory and Applications of Satisfiability Testing – SAT 2015, Marijn Heule and

Sean Weaver (Eds.). Springer International Publishing, Cham, 62–70.

[42] J. Oh, N. F. Yıldıran, J. Braha, and P. Gazzillo. 2021. Finding Broken Linux

Configuration Specifications by Statically Analyzing the Kconfig Language. In

ESEC/FSE. ACM, 893–905.

[43] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki, and A. Wąsowski.

2011. A Study of Non-Boolean Constraints in Variability Models of an Embedded

Operating System. In Proceedings of the 15th International Software Product Line
Conference, Volume 2 (Munich, Germany) (SPLC ’11). ACM, New York, NY, USA,

Article 2. https://doi.org/10.1145/2019136.2019139

[44] Q. Plazar, M. Acher, G. Perrouin, X. Devroey, and M. Cordy. 2019. Uniform

Sampling of SAT Solutions for Configurable Systems: Are We There Yet?. In ICST.
IEEE, 240–251.

[45] K. Pohl, G. Böckle, and F. J. van der Linden. 2005. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer.

[46] R. Pohl, K. Lauenroth, and K. Pohl. 2011. A Performance Comparison of Contem-

porary Algorithmic Approaches for Automated Analysis Operations on Feature

Models. In ASE. IEEE, 313–322.
[47] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. 2006. Feature Diagrams: A Survey

and a Formal Semantics. In RE. IEEE, 136–145.
[48] R. Schröter, S. Krieter, T. Thüm, F. Benduhn, and G. Saake. 2016. Feature-Model

Interfaces: The Highway to Compositional Analyses of Highly-Configurable

Systems. In ICSE. ACM, 667–678.

[49] J. Siegmund, N. Siegmund, and S. Apel. 2015. Views on Internal and External

Validity in Empirical Software Engineering. In ICSE. IEEE, 9–19.
[50] C. Sundermann, T. Heß, M. Nieke, P. M. Bittner, J. M. Young, T. Thüm, and I. Schae-

fer. 2023. Evaluating State-of-the-Art #SAT Solvers on Industrial Configuration

Spaces. EMSE 28 (2023).

[51] C. Sundermann, E. Kuiter, T. Heß, H. Raab, S. Krieter, and T. Thüm. 2023. On

the Benefits of Knowledge Compilation for Feature-Model Analyses. (2023).

Accepted.

[52] C. Sundermann, M. Nieke, P. M. Bittner, T. Heß, T. Thüm, and I. Schaefer. 2021.

Applications of #SAT Solvers on Feature Models. In VaMoS. ACM, Article 12.

[53] C. Sundermann, H. Raab, T. Heß, T. Thüm, and I. Schaefer. 2023. Exploiting
d-DNNFs for Repetitive Counting Queries on Feature Models. Technical Report
arXiv:2303.12383. Cornell University Library.

[54] C. Sundermann, S. Vill, T. Thüm, K. Feichtinger, P. Agarwal, R. Rabiser, J. A.

Galindo, and D. Benavides. 2023. UVLParser: Extending UVL with Language

Levels and Conversion Strategies. In SPLC. ACM, 39–42.

[55] T. Thüm. 2020. A BDD for Linux? The Knowledge Compilation Challenge for

Variability. In SPLC. ACM, Article 16.

[56] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. 2014. A Classification

and Survey of Analysis Strategies for Software Product Lines. CSUR 47, 1 (2014),

6:1–6:45.

[57] T. Thüm, D. Batory, and C. Kästner. 2009. Reasoning About Edits to Feature

Models. In ICSE. IEEE, 254–264.
[58] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. 2008. SATzilla: Portfolio-Based

Algorithm Selection for SAT. JAIR 32 (2008), 565–606.

[59] J. M. Young, P. M. Bittner, E. Walkingshaw, and T. Thüm. 2022. Variational

Satisfiability Solving: Efficiently Solving Lots of Related SAT Problems. EMSE 28

(2022).

[60] W. Zhang, H. Zhao, and H. Mei. 2004. A Propositional Logic-Based Method for

Verification of Feature Models. In ICFEM. Springer, 115–130.

https://doi.org/10.32388/7U1PFG
https://doi.org/10.1145/3491210
https://arxiv.org/abs/2303.14971
https://doi.org/10.1016/j.jss.2023.111770
https://doi.org/10.1016/j.jss.2023.111770
https://doi.org/10.1145/2019136.2019139

	Abstract
	1 Introduction
	2 Feature-Model Meta-Analysis
	2.1 Class-Based Meta-Analysis
	2.2 Instance-Based Meta-Analysis

	3 Conclusion
	References

