
Part I: Ad-Hoc Approaches for Variability

1. Introduction

2. Runtime Variability and Design Patterns

3. Compile-Time Variability with
Clone-and-Own

Part II: Modeling & Implementing Features

4. Feature Modeling

5. Conditional Compilation

6. Modular Features

7. Languages for Features

8. Development Process

Part III: Quality Assurance and Outlook

9. Feature Interactions

10. Product-Line Analyses

11. Product-Line Testing

12. Evolution and Maintenance

4a. Feature Models and Configurations
Recap: Software Product Lines

Features Have Dependencies

Specifying Valid Configurations

Natural Language

Configuration Map

Feature Models

Pros and Cons

Summary

4b. Transforming Feature Models
Representations and Transformations

UVL, the Universal Variability Language

Propositional Formulas

CNF as a Universal Formula Language

Summary

4c. Analyzing Feature Models
Configurators in the Wild

Automated Analysis of Feature Models

SAT, #SAT, and AllSAT

Consistency, Cardinality, and Enumeration

Feature Model

Features

Partial Configurations

Automated Analyses in FeatureIDE

Summary

FAQ

4. Feature Modeling – Handout
Software Product Lines | Elias Kuiter, Thomas Thüm, Timo Kehrer | April 24, 2023

4. Feature Modeling

4a. Feature Models and Configurations

Recap: Software Product Lines

Features Have Dependencies

Specifying Valid Configurations

Natural Language

Configuration Map

Feature Models

Pros and Cons

Summary

4b. Transforming Feature Models

4c. Analyzing Feature Models

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 2

Recap: Software Product Lines [Lecture 1]

Software Product Line [Northrop et al. 2012, p. 5]

“A software product line is

• a set of software-intensive systems

• that share a common, managed set of features

• satisfying the specific needs of a particular
market segment or mission

• and that are developed from a common set of
core assets in a prescribed
way.” [Software Engineering Institute, Carnegie Mellon University]

Product [Apel et al. 2013, p. 19]

“A product of a product line is specified by a valid
feature selection (a subset of the features of the
product line). A feature selection is valid if and
only if it fulfills all feature dependencies.”

Feature [Apel et al. 2013, p. 18]

“A feature is a characteristic or end-user-visible
behavior of a software system.”

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 3

https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_495381.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=513819
https://link.springer.com/book/10.1007/978-3-642-37521-7
https://link.springer.com/book/10.1007/978-3-642-37521-7
https://xkcd.com/2369/

Features Have Dependencies

Ordering a Waffle . . .
. . . with Sugar

. . . with Cherries

This is Nice, But . . .

• plate and sugar seem to always be
included, a fork is only included for
some orders
⇒ limitations seem arbitrary

• children get special treatment
⇒ order process is unfair

• what exactly am I paying for?
⇒ investments are unclear

In This Lecture

1. how to model and configure
features and their dependencies?

2. how to store and communicate?

3. how to analyze and understand?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 4

Author: Elias Kuiter
Author: Elias Kuiter
Author: Elias Kuiter

Specifying Valid Configurations

Configuration

• a configuration over a set of features F selects
and deselects features in F

• formally: a pair (S,D) such that S,D ⊆ F and
S,D are disjoint (S ∩ D = ∅)

• is complete if all features are covered
(S ∪ D = F) and partial otherwise

• a complete configuration is valid if it “makes
sense” in the domain and invalid otherwise

• we often abbreviate complete configurations
with S ≡ (S ,F \ S)

Feature set F = {ConfigDB,Get,Put,Delete,

Transactions,Windows, Linux}

Examples for complete configurations:

• valid (read-only database on Windows):
({C ,G ,W }, {P,D,T , L})

• valid (fully functional database on Linux):
({C ,G ,P,D,T , L}, {W })

• invalid (no operating system):
({C ,G}, {P,D,T ,W , L})

• invalid (transactions read-only database):
({C ,G ,T , L}, {P,D,W })

Examples for partial configurations:

({C ,G}, {P,D}), (∅,∅)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 5

Specifying Valid Configurations – Natural Language

Valid Configuration

A complete configuration over F is valid if it
“makes sense” in the domain. ⇝ “makes sense”?

Natural Language

• informal description of relationships between
features in F

• a complete configuration S is valid if it
conforms to the description

+ succinct

– sometimes ambiguous

– not machine-readable

“A configurable database has an API that allows
for at least one of the request types Get, Put,
or Delete. Optionally, the database can support
transactions, provided that the API allows for Put
or Delete requests. Also, the database targets a
supported operating system, which is either Win-
dows or Linux.”

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 6

Specifying Valid Configurations – Configuration Map

Valid Configuration

A complete configuration over F is valid if it
“makes sense” in the domain. ⇝ “makes sense”?

Configuration Map

• a configuration map over F is a set of
complete configurations M ⊆ P(F)

• a complete configuration S is valid if it occurs
in the configuration map (S ∈ M)

• also known as product map

+ precise

– not human-readable

– redundant, explodes in size (0 ≤ |M| ≤ 2|F |)

Feature set F = {ConfigDB,Get,Put,Delete,

Transactions,Windows, Linux}

Configuration map:
{C ,G ,W}
{C ,P,W}
{C ,G ,P,W}
{C ,D,W}
{C ,G ,D,W}
{C ,P,D,W}
{C ,G ,P,D,W}
{C ,P,T ,W}
{C ,G ,P,T ,W}
{C ,D,T ,W}
{C ,G ,D,T ,W}
{C ,P,D,T ,W}
{C ,G ,P,D,T ,W}

{C ,G , L}
{C ,P, L}
{C ,G ,P, L}
{C ,D, L}
{C ,G ,D, L}
{C ,P,D, L}
{C ,G ,P,D, L}
{C ,P,T , L}
{C ,G ,P,T , L}
{C ,D,T , L}
{C ,G ,D,T , L}
{C ,P,D,T , L}
{C ,G ,P,D,T , L}

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 7

Specifying Valid Configurations – Configuration Map in Excel

Can we do better?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 8

Author: Elias Kuiter

Feature Models – Syntax [Apel et al. 2013; Kang et al. 1990, pp. 63–72; Batory 2005]

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

Legend:

Abstract Feature

Concrete Feature

Mandatory

Optional

Or Group

Alternative Group

Feature Model

• hierarchy of features

• dependencies between features modeled by tree
and cross-tree constraints

• tree constraints: defined by the hierarchy

• cross-tree constraints: propositional formulas
over features

• abstract features are used to group other
features

• concrete features have an implementation

• also known as feature diagram or feature tree

• notation for optional/mandatory features and
or/alternative groups

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 9

https://link.springer.com/book/10.1007/978-3-642-37521-7
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11231
https://link.springer.com/chapter/10.1007/11554844_3

Feature Models – Semantics [Apel et al. 2013; Batory 2005]

Tree Constraints

• the root feature is always required

• each feature requires its parent
(aka. parent-child-relationship)

• an optional feature can be (de-)selected freely
when its parent is selected

• a mandatory feature is required by its parent

• or group: at least one child feature must be
selected when the parent is selected

• alternative group: exactly one child feature
must be selected when the parent is selected

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

Cross-Tree Constraints

• a list of propositional formulas expressing
further dependencies between features

• each cross-tree constraint must be satisfied

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 10

https://link.springer.com/book/10.1007/978-3-642-37521-7
https://link.springer.com/chapter/10.1007/11554844_3

Feature Models – Examples

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

Is This a Valid Configuration?

• valid (read-only database on Windows):
({C ,A,G ,O,W }, {P,D,T , L})

• valid (fully functional database on Linux):
({C ,A,G ,P,D,T ,O, L}, {W })

• invalid (no operating system):
({C ,A,G}, {P,D,T ,O,W , L})

• invalid (transactions read-only database):
({C ,A,G ,T ,O, L}, {P,D,W })

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 11

Feature Models – Examples

Waffle

Topping

Sugar Cream Cherries Nutella Crumbles

Chocolate Colored

Accessories

Plate Fork

Plastic Wood

Customer

Adult Child

Sugar
Cherries → Sugar ∧ Fork

Nutella ∨ Crumbles → Child
Fork → Adult

• abstract and concrete features can be assigned arbitrarily

• groups can be used anywhere

• directly below groups, no optional or mandatory markers are allowed

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 12

Pros and Cons

Pro: Making Tacit Knowledge Explicit

“I think the best [about feature modeling] is you can see
relationships, to actually know what configurations are al-
lowed and what are not allowed. That was also not so
easy to express in the past [. . .] This is from the de-
veloper’s point of view. But it’s also [. . .] important,
because before we noticed that the same functionality
was implemented twice within the same project, basically
they haven’t realized that. They implemented the same
features.” – Interview with Practitioners [Berger et al. 2014]

Pro: Tool Support

, Gears, pure::variants, . . .

Con: Challenges

• domain scoping: which features?

• feature interactions: which dependencies?

• requires infrastructure, consulting, and training

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 13

https://link.springer.com/chapter/10.1007/978-3-319-11653-2_19
https://featureide.github.io
https://biglever.com/solution/gears/
https://www.pure-systems.com/de/purevariants
https://commons.wikimedia.org/wiki/File:Wollmilchsau.png

Feature Models and Configurations – Summary

Lessons Learned

• features, dependencies between features, and
configurations

• feature models: abstract and concrete features,
tree and cross-tree constraints

• tree constraints: optional, mandatory, or group,
alternative group

Further Reading

• Apel et al. 2013, Section 2.3, pp. 26–39
— introduction to feature modeling

• Thorsten Berger et al. (2013): A Survey of Variability
Modeling in Industrial Practice

• Damir Nešić et al. (2019): Principles of Feature
Modeling

Practice

1. sketch a feature model with features
A,B,C ,D,E ,F that has exactly those 5 valid
configurations (pen and paper preferred):

{A,B}
{A,B,D}

{A,C ,E}
{A,C ,F}

{A,C ,E ,F}

2. discuss in groups whether your feature models
are syntactically correct and specify exactly the
above configurations

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4a. Feature Models and Configurations 14

https://link.springer.com/book/10.1007/978-3-642-37521-7
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1145/3338906.3338974

4. Feature Modeling

4a. Feature Models and Configurations

4b. Transforming Feature Models

Representations and Transformations

UVL, the Universal Variability Language

Propositional Formulas

CNF as a Universal Formula Language

Summary

4c. Analyzing Feature Models

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 15

Representations and Transformations

Natural Language

“A configurable database has an API that allows for at least one of the request
types Get, Put, or Delete. Optionally, the database can support transactions,
provided that the API allows for Put or Delete requests. Also, the database
targets a supported operating system, which is either Windows or Linux.”

Configuration Map

{C, G,W}

.

.

.

{C, G, P, D, T,W}

{C, G, L}

.

.

.

{C, G, P, D, T, L}

Feature Diagram (Graphical Feature Model)

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

Feature Model
Feature Diagram, P1

Natural Language
Thoughts, Plain Text

Configuration Map
Excel, Set of Sets

to
S
tr
in
gP
3 P

2

P
3

Automated Transformation

Semi-Automated Transformation

Concrete Format

Problems

P1 How to express feature models textually?

P2 How to (a) validate configurations and (b) get
all valid configurations automatically?

P3 (How to reverse engineer feature models?)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 16

UVL, the Universal Variability Language [UVL]

features
ConfigDB
mandatory
API {abstract}
or
Get
Put
Delete

optional
Transactions

mandatory
OS {abstract}
alternative
Windows
Linux

constraints
Transactions => Put | Delete

A Feature Model “Sideways”

ConfigDB

API

Transactions

OS

Get

Put

Delete

Windows

Linux

Transactions → Put ∨ Delete

Universal Variability Language (UVL)

• textual language for feature modeling

• adds advanced modeling constructs
(e.g., attributes, cardinalities, submodels, . . .)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 17

https://universal-variability-language.github.io/
Author: Elias Kuiter

Representations and Transformations

Feature Model
Feature Diagram, UVL

Natural Language
Thoughts, Plain Text

Configuration Map
Excel, Set of Sets

to
S
tr
in
gP
3 P

2

P
3

Automated Transformation

Semi-Automated Transformation

Concrete Format

Problems

P1 How to express feature models textually?

P2 How to (a) validate configurations and (b) get
all valid configurations automatically?

P3 (How to reverse engineer feature models?)

Solutions

P1 Universal Variability Language ⇒ Syntax

P2 Semantics?

P3 –

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 18

Propositional Formulas – Recap

Syntax of Propositional Formulas

Inductive definition of propositional formulas:

• the Boolean truth values ⊤, ⊥
• any Boolean variable X

• any negation ¬ϕ of a formula ϕ

• any conjunction (ϕ ∧ ψ) of formulas ϕ and ψ

• any disjunction (ϕ ∨ ψ), implication (ϕ→ ψ),
or biimplication (ϕ↔ ψ)

Informal Semantics of Propositional Formulas

⊤
⊥
¬ϕ
ϕ ∧ ψ
ϕ ∨ ψ
ϕ→ ψ

ϕ↔ ψ

means

“true” (or tautology)

“false” (or contradiction)

“not ϕ”

“ϕ and ψ”

“ϕ or ψ” (inclusive or!)

“if ϕ, then ψ” (and else?)

“ϕ if and only if ψ”

Operator Precedence: ¬, ∧, ∨, →, ↔

Transactions → (Put ∨ Delete)

≡ Transactions → Put ∨ Delete

̸≡ (Transactions → Put) ∨ Delete

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 19

Propositional Formulas – Example

A Feature Model FM . . .

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

. . . as a Propositional Formula Φ(FM)

Φ(FM) = ConfigDB

∧ (API ↔ ConfigDB)

∧ (Transactions → ConfigDB)

∧ (OS ↔ ConfigDB)

∧ (Get ∨ Put ∨ Delete ↔ API)

∧ (Windows ∨ Linux ↔ OS)

∧ ¬(Windows ∧ Linux)

∧ (Transactions → Put ∨ Delete)

Is This a Valid Configuration?

Φ(FM)({C ,A,G ,O,W })
≡ Φ(FM)(({C ,A,G ,O,W }, {P,D,T , L}))
≡ C ∧ (A↔ C) ∧ (T → C) ∧ (O ↔ C)

∧ (G ∨ P ∨ D ↔ A) ∧ (W ∨ L↔ O)

∧ ¬(W ∧ L) ∧ (T → P ∨ D)

≡ ⊤ ∧ (⊤ ↔ ⊤) ∧ (⊥ → ⊤) ∧ (⊤ ↔ ⊤)
∧ (⊤ ∨⊥ ∨ ⊥ ↔ ⊤) ∧ (⊤ ∨⊥ ↔ ⊤)
∧ ¬(⊤ ∧⊥) ∧ (⊥ → ⊥∨⊥)

≡ ⊤ ∧⊤ ∧ ⊤ ∧⊤ ∧⊤ ∧⊤ ∧ ⊤ ∧⊤
≡ ⊤

⇝ configuration is valid
(read-only database on Windows)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 20

Propositional Formulas – Example

A Feature Model FM . . .

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

. . . as a Propositional Formula Φ(FM)

Φ(FM) = ConfigDB

∧ (API ↔ ConfigDB)

∧ (Transactions → ConfigDB)

∧ (OS ↔ ConfigDB)

∧ (Get ∨ Put ∨ Delete ↔ API)

∧ (Windows ∨ Linux ↔ OS)

∧ ¬(Windows ∧ Linux)

∧ (Transactions → Put ∨ Delete)

Is This a Valid Configuration?

Φ(FM)({C ,A,G})
≡ Φ(FM)(({C ,A,G}, {P,D,T ,O,W , L}))
≡ C ∧ (A↔ C) ∧ (T → C) ∧ (O ↔ C)

∧ (G ∨ P ∨ D ↔ A) ∧ (W ∨ L↔ O)

∧ ¬(W ∧ L) ∧ (T → P ∨ D)

≡ ⊤ ∧ (⊤ ↔ ⊤) ∧ (⊥ → ⊤) ∧ (⊥ ↔ ⊤)
∧ (⊤ ∨⊥ ∨ ⊥ ↔ ⊤) ∧ (⊥ ∨⊥ ↔ ⊥)
∧ ¬(⊥ ∧⊥) ∧ (⊥ → ⊥∨⊥)

≡ ⊤ ∧⊤ ∧ ⊤ ∧⊥ ∧⊤ ∧⊤ ∧ ⊤ ∧⊤
≡ ⊥

⇝ configuration is invalid
(no operating system)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 21

Propositional Formulas – Algorithm

Algorithm: Translate FM Into Φ(FM)

1. translate each tree constraint
• Root feature: R is always required
• Optional feature: C requires P
• Mandatory feature:

Optional + P requires C
• Or group:

Optional + P requires at least one Ci
• Alternative group:

Optional + P requires exactly one Ci

2. conjoin translated tree constraints
Φ(TC)←

∧
tc∈TC Φ(tc)

3. conjoin cross-tree constraints
Φ(CTC)←

∧
ctc∈CTC ctc

4. Φ(FM)← Φ(TC) ∧ Φ(CTC)

Φ
(

Root
)
= Root

Φ

 P

C

 = C → P

Φ

 P

C

 = C ↔ P

Φ

 P

C1 . . . Cn

 =
∨

1≤i≤n

Ci ↔ P

Φ

 P

C1 . . . Cn

 =
∨

1≤i≤n

Ci ↔ P

∧
∧

1≤i<j≤n

¬(Ci ∧ Cj)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 22

CNF as a Universal Formula Language

Recap: Conjunctive Normal Form

• a literal L is a variable X or its negation ¬X
• a clause C is a disjunction of literals

∨
j Lj

• a conjunctive normal form (CNF) is a
conjunction of clauses

∧
i Ci =

∧
i

∨
j Lj

• intuitively: a set of “rules” to be satisfied

• any formula ϕ can be transformed into a CNF
ϕ′ that is logically equivalent (ϕ⇔ ϕ′)

Recap: Laws of Propositional Logic

• implication: ϕ→ ψ ⇔ ¬ϕ ∨ ψ
• biimplication: ϕ↔ ψ ⇔ (¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ)
• De Morgan’s laws: ¬(ϕ ∧ ψ)⇔ ¬ϕ ∨ ¬ψ
• distributivity: (ϕ ∧ ψ) ∨ χ⇔ (ϕ ∨ χ) ∧ (ψ ∨ χ)

Transforming Part of Φ(FM) into CNF (Φ(FM))

C

∧ (T → C)

∧ (O ↔ C)

∧ (W ∨ L ↔ O)

∧ ¬(W ∧ L)

C

∧ (¬T ∨ C)

∧ (¬O ∨ C) ∧ (¬C ∨ O)

∧ (¬(W ∨ L) ∨ O)

∧ (¬O ∨ W ∨ L)

∧ ¬(W ∧ L)

C

∧ (¬T ∨ C)

∧ (¬O ∨ C) ∧ (¬C ∨ O)

∧ ((¬W ∧ ¬L) ∨ O)

∧ (¬O ∨ W ∨ L)

∧ (¬W ∨ ¬L)

C

∧ (¬T ∨ C)

∧ (¬O ∨ C) ∧ (¬C ∨ O)

∧ (¬W ∨ O) ∧ (¬L ∨ O)

∧ (¬O ∨ W ∨ L)

∧ (¬W ∨ ¬L)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 23

CNF as a Universal Formula Language – DIMACS

C

∧ (¬T ∨ C)

∧ (¬O ∨ C) ∧ (¬C ∨ O)

∧ (¬W ∨ O) ∧ (¬L ∨ O)

∧ (¬O ∨W ∨ L)

∧ (¬W ∨ ¬L)

c 1 C
c 2 T
c 3 O
c 4 W
c 5 L
p cnf 5 6
1 0
−2 1 0
−3 1 0 −1 3 0
−4 3 0 −5 3 0
−3 4 5 0
−4 5 0

DIMACS Format [DIMACS 1993]

• de facto industry standard for storing CNF

• machine-readable, automated analyses, . . .

• comments start with c ...

• problem line:
p cnf #variables #clauses

• clause
∨

i Li translates to L1 ... Ln 0

• intuitively:

0

-

 means

∧
∨
¬

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 24

https://beyondnp.org/static/media/uploads/docs/satformat.pdf

Representations and Transformations

Feature Model
Feature Diagram, UVL

Natural Language
Thoughts, Plain Text

Formula
Infix Notation

Configuration Map
Excel, Set of Sets

CNF
DIMACS

L
o
ss

o
f
S
tr
u
ct
u
re to
S
tr
in
g

(i
)

Φ(ii)

C
N
F(ii)

CN
F

P2(b)
Automated Transformation

Semi-Automated Transformation
Concrete Format

Problems

P1 How to express feature models textually?

P2 How to

(a) validate configurations and
(b) get all valid configurations

automatically?

P3 (How to reverse engineer feature models?)

Solutions

P1 Universal Variability Language ⇒ Syntax

P2 Propositional Formulas ⇒ Semantics

(a) evaluate feature-model formula
(b) Lecture 4c

P3 (i) e.g., Bakar et al. 2015
(ii) e.g., Czarnecki and Wasowski 2007

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 25

https://doi.org/10.1016/j.jss.2015.05.006
https://ieeexplore.ieee.org/document/4339252

Transforming Feature Models – Summary

Lessons Learned

• to understand large configuration spaces, we
need formal semantics and machine-readable
representations

• propositional formulas satisfy many (though
not all) needs for such a representation

Further Reading

• Don Batory (2005): Feature Models, Grammars, and
Propositional Formulas

• UVL — official website for the Universal Variability
Language with examples, grammar, literature pointers

• Alexander Knüppel et al. (2017): Is There a
Mismatch Between Real-World Feature Models and
Product-Line Research?

Practice

1. translate the following feature diagram into a
propositional formula:

A

B C

D E

D → B

2. check formulas of your colleagues

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4b. Transforming Feature Models 26

https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844_3
https://universal-variability-language.github.io/
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3106237.3106252

4. Feature Modeling

4a. Feature Models and Configurations

4b. Transforming Feature Models

4c. Analyzing Feature Models

Configurators in the Wild

Automated Analysis of Feature Models

SAT, #SAT, and AllSAT

Consistency, Cardinality, and Enumeration

Feature Model

Features

Partial Configurations

Automated Analyses in FeatureIDE

Summary

FAQ

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 27

Configurators in the Wild – Cars

Configuring a car . . .

. . . is complicated!

1. the default configuration

2. we want black cap

3. we want white wheels

4. black cap unavailable,
red selected automatically
(not blue!)

5. fine, back to black wheels

6. and, back to black cap

7. confirm selection to
continue with selection of
the car color

8. we want a red car

9. popup dialog: black wheels
unavailable (no automatic
selection! preview of
unavailable wheels!)

what now? back to Step 3?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 28

Author: Thomas Thuem

Configurators in the Wild – Cars

Configuring a Car . . .

10. cancel the dialog

with a Weird Price with 8 Wheels!

• canceling the dialog was not considered and lead to an
invalid state (i.e., configuration)

• humans check these configurations, but some errors are
only found during production

• many constraints: appear arbitrary, not explained

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 29

Author: Thomas Thuem
Author: Thomas Thuem
Author: Thomas Thuem

Configurators in the Wild – Cars

Configuring a German Car [example from Lecture 1]

Why does the telephone con-
flict with Microsoft Office?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 30

Author: Thomas Thuem

Configurators in the Wild – Notebooks

Configuring a Notebook

can detect mistakes, but provides
no explanations or fixes

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 31

Author: Thomas Thuem
Author: Thomas Thuem

Configurators in the Wild – Notebooks

Still Configuring a Notebook

allows some feature com-
binations and not others,
prices are opaque

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 32

Author: Thomas Thuem

Automated Analysis of Feature Models

Open Questions

• How do such configurators work?

• How to avoid inconsistencies?

• How to provide explanations and fixes?

• How to get all valid configurations
automatically? (P2(b))

Automated Analysis of Feature Models

• up until now: creation and transformation of
feature models

• now: analysis of feature models to improve our
understanding of a configuration space

• for brevity: product = valid configuration

Asking Questions About Feature Models

• Is a given configuration valid?

• Is there any product at all?
How many/which products are there?

• Is a given feature (de-)selectable at all?
How many/which products include it?

• Is a given partial configuration consistent?
How many/which products include it?

• (Which features always occur together?)

• (Is a given constraint redundant?)

• (How do two feature model versions differ?)

• (Why is . . . ? How to fix . . . ?)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 33

SAT, #SAT, and AllSAT

Recap: Boolean Satisfiability Problem (SAT)

• decision problem: is there any assignment A
that satisfies a given formula?

• formally: SAT (ϕ)⇔ ∃A : ϕ(A) = ⊤
• known to be NP-complete:

in theory, difficult to solve if P ̸= NP;
in practice, solvability depends on domain

• answered by SAT solvers:
highly-optimized, off-the-shelf tools;
competitively developed over several decades;
takes a CNF in DIMACS format as input

• X → Y is satisfiable

• X ∨ ¬X is satisfiable (even a tautology)

• X ∧ ¬X is not satisfiable (why?)

Sharp Satisfiability Problem (#SAT)

• counting problem: how many assignments
satisfy a given formula?

• #SAT (ϕ) = |{A | ϕ(A) = ⊤}|
• known to be #P-complete:

at least as hard as SAT (probably harder)

• answered by #SAT solvers

Solution Enumeration Problem (AllSAT)

• enumeration problem: which assignments
satisfy a given formula?

• AllSAT (ϕ) = {A | ϕ(A) = ⊤}
• at least as hard as #SAT (probably harder)

• answered by AllSAT solvers

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 34

Automated Analysis of Feature Models

Asking Questions About Feature Models

• Is a given configuration valid? ⇒ evaluate

• Is there any valid configuration at all?
How many/which valid configurations are there?

• Is a given feature (de-)selectable at all?
How many/which valid configurations include it?

• Is a given partial configuration consistent?
How many/which valid configurations include it?

Choosing the Right Solver

• “is?” ≈ SAT solver query

• “how many?” ≈ #SAT solver query

• “which?” ≈ AllSAT solver query

Typical Feature-Model Analysis Process

Feature Model Formula DIMACS

Query Answer Result

Φ CNF

formulate

solve

SAT
#SAT
AllSAT

interpret

for brevity, we assume that ϕ = CNF (Φ(FM))
for a given feature model FM

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 35

Consistency, Cardinality, and Enumeration – Feature Model

Consistency of Feature Models (SAT)

Void/Consistent Feature Model

• are there grave modeling errors?

• is it possible to configure any product at all?

ϕ ⊥/⊤ FM is void

FM is consistent

SAT ⊥

⊤

Cardinality of Feature Models (#SAT)

How Many Products Are There?

ϕ |C |#SAT

Variability Factor: Share of Products?

ϕ |C | |C |
2|F|

#SAT

Root

X Y

¬(X ∨ Y)

void

Root

X Y

X ∨ Y

consistent

Root

X Y

¬(X ∨ Y)

0 products, VF 0

Root

X Y

X ∨ Y

2 products, VF 2
8

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 36

Consistency, Cardinality, and Enumeration – Feature Model

Feasibility of SAT-Based Analyses

Is SAT-Based Analysis “Easy”?

• provocative claim: “SAT-based analysis of
feature models is easy” [Mendonca et al. 2009]

• easy = performs much better than expected
(although NP-complete)

• easy = fast?
• what about formulating the query?

(e.g., CNF transformation)
• what about many queries?

(e.g., what we discuss next)

Feasibility of #SAT-Based Analyses

Time to Count Products of Linux

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

1 sec

1 min

1 hour

v2.6.0

v2.6.15

v2.6.22timeout

Year

T
im

e
fo
r
C
ou

n
ti
n
g
(l
og

ar
it
h
m
ic
)

• the solver from 2023 can solve models from 2003

• can we analyze the models from 2023 in 2043?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 37

https://dl.acm.org/doi/10.5555/1753235.1753267
Authors: Thomas Thuem, Elias Kuiter

Consistency, Cardinality, and Enumeration – Feature Model

Enumeration of Feature Models (AllSAT)

Which Products Are There?

• P2(b): How to get all products?

ϕ C
AllSAT

AllSAT does not scale to realistic feature models!
50 features, configurations à 1 Byte ≈ 1 Petabyte

Root

X Y

¬(X ∨ Y)

∅

Root

X Y

X ∨ Y

{{Root,X}, {Root,Y }}

Feature Model
Feature Diagram, UVL

Natural Language
Thoughts, Plain Text

Formula
Infix Notation

Configuration Map
Excel, Set of Sets

CNF
DIMACS

L
o
ss

o
f
S
tr
u
ct
u
re to
S
tr
in
g

Φ

C
N
F

CN
F

AllSAT
Automated Transformation

Semi-Automated Transformation
Concrete Format

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 38

Consistency, Cardinality, and Enumeration – Features

Consistency of Features (SAT)

Core/Dead Feature

• can a feature F be (de-)selected at all?

ϕ ∧ F ⊥/⊤ F is dead

F is not dead

SAT ⊥

⊤

ϕ ∧ ¬F ⊥/⊤ F is core

F is not core

SAT ⊥

⊤

Cardinality of Features (#SAT)

How Many Products Include Feature F?

ϕ ∧ F |{S ∈ C | F ∈ S}|#SAT

Commonality: How Dead is This Feature?

ϕ ∧ F |{S ∈ C | F ∈ S}| |{S∈C |F∈S}|
|C |

#SAT

Root

X Y

¬X

X is dead, Root and Y are core

Root

X Y

¬X

X : 0 products, Root and Y : 1 products

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 39

Consistency, Cardinality, and Enumeration – Partial Configurations

Consistency of Partial Configurations (SAT)

Valid Partial Configuration

Is a partial configuration C = (S ,D) consistent
with the feature model?

ϕ ∧
∧

s∈S s ∧
∧

d∈D ¬d ⊥/⊤
C ×

C

SAT ⊥

⊤

Cardinality of Partial Configurations (#SAT)

How Many Products Are Still Configurable for C?

ϕ ∧ ... |{(S ′,D′) ∈ C | S ⊆ S ′,D ∈ D′}|#SAT

Root

X Y

X → Y

({Root}, {X})

Root

X Y

X → Y

({Root}, {X}): 2 products

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 40

Automated Analyses in FeatureIDE – Feature-Model Editor

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 41

Author: Elias Kuiter
Author: Elias Kuiter

Automated Analyses in FeatureIDE – Configuration Editor

⇒

Decision Propagation

• after each decision (i.e., click) . . .
• . . . select features that are now

conditionally core
• . . . deselect features that are

now conditionally dead

• this way it is impossible to configure
an invalid product

• explanations for all propagated
decisions

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 42

Author: Elias Kuiter
Author: Elias Kuiter

Automated Analysis of Feature Models

The Road So Far . . .

Feature Model Formula DIMACS

Query

void feature model
variability factor
all products

core/dead features
false-optional features

commonality
valid partial configuration

decision propagation

Answer

Φ CNF

formulate

solve

SAT
#SAT
AllSAT

. . . and Beyond

attributes
cardinalities
submodels

Feature Model Formula

quantifiers
predicates
functions

DIMACS

DNF
d-DNNF
BDD

Query

atomic sets
redundant constraints
feature-model edits

explanations
sampling
slicing

Answer

Φ CNF

Tseitin

formulate

solve

SAT, #SAT, AllSAT
MAX-SAT

Solution-SAT
MUS

SMT, CSP
QBF

WMC, PMC

• develop new analyses

• improve efficiency of existing analyses

• investigate correctness and compositionality

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 43

Analyzing Feature Models – Summary

Lessons Learned

• with solvers, we can build reliable configurators
for product lines

• SAT-based analyses: void feature model,
core/dead features, decision propagation

• #SAT-based analyses: variability factor, feature
commonality

Further Reading

• Apel et al. 2013, Section 10.1, pp. 244–254
— introduction to feature-model analysis

• David Benavides et al. (2010): Automated Analysis of
Feature Models 20 Years Later: A Literature Review
— old but extensive literature survey

• Chico Sundermann et al. (2021): Applications of
#SAT Solvers on Feature Models
— experiments on the scalability of #SAT solvers

Practice

A

B C

D E

think of a constraint that would make exactly one
feature dead

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 44

https://link.springer.com/book/10.1007/978-3-642-37521-7
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/3442391.3442404
https://doi.org/10.1145/3442391.3442404

FAQ – 4. Feature Modeling

Lecture 4a

• What is feature modeling? When is
it needed?

• How can we specify valid
combinations of features?

• What is a complete, partial, valid,
invalid configuration?

• What are (dis-)advantages of
natural language, configuration
map, and feature models?

• What is the graphical syntax and
semantics of feature models?

• Give an example feature model!

Lecture 4b

• What representations of feature
models are available? Are they
equivalent?

• How to represent feature models
textually?

• What is UVL (used for)?

• How to identify whether a
configuration is valid?

• How to translate feature model into
a propositional formula?

• What are DIMACS and KConfig
(used for)?

• Would you recommend Excel for
feature model? Why (not)?

Lecture 4c

• Why can configuration become
challenging?

• How can we identify problems with
feature models and configurations?

• How can feature models by
analyzed? What analyses are
available?

• What solvers can be used to analyze
feature models?

• What is the difference between
SAT, #SAT, and ALLSAT?

• Why are solvers useful when
creating configurations?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 4. Feature Modeling – 4c. Analyzing Feature Models 45

	
	Feature Models and Configurations
	Recap: Software Product Lines
	Features Have Dependencies
	Specifying Valid Configurations
	Feature Models
	Pros and Cons
	Summary

	Transforming Feature Models
	Representations and Transformations
	UVL, the Universal Variability Language
	Propositional Formulas
	CNF as a Universal Formula Language
	Summary

	Analyzing Feature Models
	Configurators in the Wild
	Automated Analysis of Feature Models
	SAT, #SAT, and AllSAT
	Consistency, Cardinality, and Enumeration
	Automated Analyses in FeatureIDE
	Summary
	FAQ

