
Part I: Ad-Hoc Approaches for Variability

1. Introduction

2. Runtime Variability and Design Patterns

3. Compile-Time Variability with
Clone-and-Own

Part II: Modeling & Implementing Features

4. Feature Modeling

5. Conditional Compilation

6. Modular Features

7. Languages for Features

8. Development Process

Part III: Quality Assurance and Outlook

9. Feature Interactions

10. Product-Line Analyses

11. Product-Line Testing

12. Evolution and Maintenance

10a. Analysis Strategies
Recap: Quality Assurance

Automated Analysis of Product Lines

Product-Based Strategies

Feature-Based Strategies

Family-Based Strategies

Classification of Strategies

Summary

10b. Analyzing Feature Mappings
Automated Analysis of Feature Mappings

Presence Conditions

Detecting Dead Code

Detecting Superfluous Annotations

Joining the Problem and Solution Space

Analyzing Feature Modules

Feature-Mapping Analyses in FeatureIDE

Summary

10c. Analyzing Variable Code
Automated Analysis of Variable Code

Variability-Aware Type Checking

Analyzing Feature Modules

Analyzing Conditional Compilation

Discussion

Product-Line Analyses in the Wild

Summary

FAQ

10. Product-Line Analyses – Handout
Software Product Lines | Elias Kuiter, Thomas Thüm, Timo Kehrer | June 9, 2023

10. Product-Line Analyses

10a. Analysis Strategies

Recap: Quality Assurance

Automated Analysis of Product Lines

Product-Based Strategies

Feature-Based Strategies

Family-Based Strategies

Classification of Strategies

Summary

10b. Analyzing Feature Mappings

10c. Analyzing Variable Code

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 2

Recap: Quality Assurance [Ludewig and Lichter 2013]

• last lecture:
how to avoid variability bugs (esp. feature
interactions)

• this + next lecture:
how to find variability bugs

Quality Assurance
(Qualitätssicherung)

organizational

Process
Models
(Lecture 8)

analytical

analysis
(Lecture 10)

Compilation

Static
Analysis

execution
(Lecture 11)

Black-Box
Testing

White-Box
Testing

constructive

Guidelines
(Lecture 9)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 3

https://learning.oreilly.com/library/view/-/9781457184932/?ar

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 4

https://xkcd.com/1700/

Automated Analysis of Product Lines

Typical Program Analyses

• code metrics

• type checking

• theorem proving

• data-flow analysis

• performance
analysis

• . . .

What is a Program Analysis?

• analyzes properties of a program (e.g.,
correctness, performance, and safety)

• can be used to automatically find bugs,
bottlenecks, and other vulnerabilities

Asking Questions About Product Lines

• Which product has the most lines of code? [ref]

• Which products have type errors? [ref]

• Which products violate specifications? [ref]

• Which products have unsafe data flows? [ref]

• Which is the fastest product? [ref]

Which product has the smallest binary? [ref]

• . . .

What is a Product-Line Analysis?

• analyzes properties of an entire product line

• can be roughly classified by its strategy:
• product-based
• feature-based
• family-based

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 5

https://dl.acm.org/doi/10.1145/3307630.3342384
https://dl.acm.org/doi/10.1145/1868688.1868693
https://dl.acm.org/doi/10.1145/2371401.2371404
https://dl.acm.org/doi/10.1145/2499370.2491976
https://link.springer.com/article/10.1007/s10515-020-00273-8
https://dl.acm.org/doi/10.1145/3546932.3546997

Product-Based Strategies

Intuition

• to analyze the product line, just analyze each
product
• individually
• in isolation
• possibly in parallel

• e.g., compile and verify each product

Lego Manikin

Headpiece

Helmet Hat

Head Item

Brush Phone

Shirt Pants

Red Blue

Helmet → ¬Phone

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 6

Authors: Thomas Thuem, Elias Kuiter

Product-Based Strategies

Algorithm

Require: a product line pl ; algorithms γ, α, σ
C ← AllSAT (ϕ(FMpl)) ▷ enumerate valid config’s

results ← []
for all S ∈ C do ▷ for each valid config

p ← γ(S) ▷ generate product

results += α(p) ▷ add analysis result

end for
return σ(results)

• γ generates (e.g., compiles) products (e.g.,
make, gradle, FeatureHouse, npm, . . .)

• α analyzes the product (e.g., run verifier)

• σ summarizes the results (e.g., each individual
call to α must succeed)

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

σ([α(γ({C , G ,W}))
α(γ({C , P,W}))
α(γ({C , G , P,W}))
α(γ({C ,D,W}))
α(γ({C , G ,D,W}))
α(γ({C , P,D,W}))
α(γ({C , G , P,D,W}))
α(γ({C , P,T ,W}))
α(γ({C , G , P,T ,W}))
α(γ({C ,D,T ,W}))
α(γ({C , G ,D,T ,W}))
α(γ({C , P,D,T ,W}))
α(γ({C , G , P,D,T ,W}))

α(γ({C , G , L}))
α(γ({C , P, L}))
α(γ({C , G , P, L}))
α(γ({C ,D, L}))
α(γ({C , G ,D, L}))
α(γ({C , P,D, L}))
α(γ({C , G , P,D, L}))
α(γ({C , P,T , L}))
α(γ({C , G , P,T , L}))
α(γ({C ,D,T , L}))
α(γ({C , G ,D,T , L}))
α(γ({C , P,D,T , L}))
α(γ({C , G , P,D,T , L}))])

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 7

Classification of Strategies

Product-Based Strategy

• analyze individual products

+ sound, complete

+ uses off-the-shelf
generator γ and analysisα

– redundant effort

– does not scale well

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 8

Authors: Thomas Thuem, Elias Kuiter

Feature-Based Strategies

Intuition

• to analyze the product line, just analyze each
feature individually

• ignore all relations to other features

• e.g., compile and verify each component
⇒ requires interfaces between features
(components, services, plug-ins)

Lego Manikin

Headpiece

Helmet Hat

Head Item

Brush Phone

Shirt Pants

Red Blue

Helmet → ¬Phone

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 9

Authors: Thomas Thuem, Elias Kuiter

Feature-Based Strategies

Algorithm

Require: a product line pl ; algorithms α, σ
results ← []
for all f ∈ Fpl do ▷ for each feature

results += α(f) ▷ add analysis result

end for
return σ(results)

• α analyzes the feature (e.g., compiles and
verifies the component)

• σ summarizes the results (see product-based)

ConfigDB

API

Get Put Delete

Transactions OS

Windows Linux

Transactions → Put ∨ Delete

σ([α(C) – e.g., compile and verify base code

α(G) – e.g., compile and verify feature Get

α(P) – . . .

α(D)

α(T)

α(W)

α(L)])

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 10

Classification of Strategies

Product-Based Strategy

• analyze individual products

+ sound, complete

+ uses off-the-shelf
generator γ and analysisα

– redundant effort

– does not scale well

Feature-Based Strategy

• analyze individual features

+ sound, efficient

– analysis α requires features
with interfaces

– incomplete: misses all
feature interactions

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 11

Authors: Thomas Thuem, Elias Kuiter
Authors: Thomas Thuem, Elias Kuiter

Family-Based Strategies

Intuition

• analyze the product line (or family) as a whole

• requirement: the analysis should give the same
result as a product-based analysis

• makes use of the feature model and artifacts

• analysis is hand-crafted, no generic algorithm
⇒ typically: reduction to SAT problems

Today’s Examples

• analyzing feature mappings

• analyzing variable code

⇒ here: for conditional compilation and feature-
oriented programming

+

Lego Manikin

Headpiece

Helmet Hat

Head Item

Brush Phone

Shirt Pants

Red Blue

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 12

Authors: Thomas Thuem, Elias Kuiter

Classification of Strategies

Product-Based Strategy

• analyze individual products

+ sound, complete

+ uses off-the-shelf
generator γ and analysisα

– redundant effort

– does not scale well

Feature-Based Strategy

• analyze individual features

+ sound, efficient

– analysis α requires features
with interfaces

– incomplete: misses all
feature interactions

+

Lego Manikin

Headpiece

Helmet Hat

Head Item

Brush Phone

Shirt Pants

Red Blue

Family-Based Strategy

• analyze the product line

+ sound, complete, efficient

– requires careful,
hand-crafted analysis α

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 13

Authors: Thomas Thuem, Elias Kuiter
Authors: Thomas Thuem, Elias Kuiter
Authors: Thomas Thuem, Elias Kuiter

Analysis Strategies – Summary

Lessons Learned

• product-line analyses are needed for quality
assurance

• product-based: simple, but does not scale

• feature-based: fairly simple, but misses
interactions

• family-based: efficient, but most complex

Further Reading

• Apel et al. 2013, Chapter 10

• Thüm et al. 2014

Practice

Can you imagine other analysis strategies than
product-based, feature-based, and family-based?
How could such strategies look like?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10a. Analysis Strategies 14

https://link.springer.com/book/10.1007/978-3-642-37521-7
https://raw.githubusercontent.com/SoftVarE-Group/Papers/main/2014/2014-CSUR-Thuem.pdf

10. Product-Line Analyses

10a. Analysis Strategies

10b. Analyzing Feature Mappings

Automated Analysis of Feature Mappings

Presence Conditions

Detecting Dead Code

Detecting Superfluous Annotations

Joining the Problem and Solution Space

Analyzing Feature Modules

Feature-Mapping Analyses in FeatureIDE

Summary

10c. Analyzing Variable Code

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 15

Automated Analysis of Feature Mappings

Recap: A Typical Product Line

• embedded or systems programming (e.g.,
Linux)

• implemented with conditional compilation

• build systems (e.g., KBuild)
• preprocessors (e.g., CPP)

• feature traceability only implicit
⇒ there is code scattering and tangling

Recap: Feature Mapping

• specifies which features correspond to
which artifacts (individual files/lines,
components/feature modules/aspects)

• connects the problem space to the
solution space

Asking Questions About the Feature Mapping

• Is the code even included in any product?

• Are there contradictory or unnecessary preprocessor
annotations in the code?

• How scattered and tangled is the code?

• . . .

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 16

Automated Analysis of Feature Mappings

Running Example: Graph Product Line

Graph

Node

Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected)
Hyper → Undirected
Directed ∨ Hyper

An Undirected Hypergraph

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 17

https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg

Presence Conditions

Presence Condition

A presence condition (PC) for a code
location (i.e., a line or file) is a for-
mula that describes the circumstances
under which the code location is in-
cluded in a product.

• useful for implementation
techniques with code scattering
and tangling

• e.g., build systems (file PCs) or
preprocessors (line PCs)

• here: line PCs for the C
preprocessor

Presence Conditions

⊤
⊤

Colored
Colored
Colored

⊤
⊤
⊤

Directed
Directed

¬Dir ∧ Hyper
¬Dir ∧ Hy ∧ Un
¬Dir ∧ Hy ∧ Un

¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir

¬Dir ∧ ¬Hy
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir

¬Dir ∧ ¬Hy
⊤

graph.cpp

class Node {
string label;

#ifdef COLORED
string color;

#endif
};

class Edge {
#ifdef DIRECTED
Node fromNode, toNode;

#elifdef HYPER
#ifdef UNDIRECTED
set<Node> nodeSet;

#elifdef DIRECTED
map<Node, set<Node>> nodeMap;

#endif
#else
#ifndef DIRECTED
pair<Node, Node> nodePair;

#endif
#endif
};

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 18

Detecting Dead Code

Dead Code

A line or file of code is dead when

• no product includes it.

• or, equivalently:
its presence condition PC is
contradictory (i.e., PC ⇒ ⊥).

calculated by querying a satisfiability
solver whether PC is not satisfiable
(i.e., ¬SAT (PC))

What causes dead code?

• confusion due to nested #ifdef

• domain modeling mistakes

• can be intended! [Hentze et al. 2021]

Presence Conditions

⊤
⊤

Colored
Colored
Colored

⊤
⊤
⊤

Directed
Directed

¬Dir ∧ Hyper
¬Dir ∧ Hy ∧ Un
¬Dir ∧ Hy ∧ Un

¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir

¬Dir ∧ ¬Hy
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir

¬Dir ∧ ¬Hy
⊤

graph.cpp

class Node {
string label;

#ifdef COLORED
string color;

#endif
};

class Edge {
#ifdef DIRECTED
Node fromNode, toNode;

#elifdef HYPER
#ifdef UNDIRECTED
set<Node> nodeSet;

#elifdef DIRECTED
map<Node, set<Node>> nodeMap;

#endif
#else
#ifndef DIRECTED
pair<Node, Node> nodePair;

#endif
#endif
};

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 19

https://dl.acm.org/doi/10.1145/3442391.3442406

Detecting Superfluous Annotations

Superfluous Annotation

An annotation is superfluous

• when it can be omitted without
consequences.

• or, equivalently:
its presence condition PC is
implied by the enclosing presence
condition PC ′ (i.e., PC ′ ⇒ PC).

calculated by querying a satisfiability
solver whether PC ′ ∧¬PC is not sat-
isfiable (i.e., ¬SAT (PC ′ ∧ ¬PC))

• PC ′ = ¬Dir ∧ ¬Hy

• PC = ¬Dir ∧ ¬Hy ∧ ¬Dir

Presence Conditions

⊤
⊤

Colored
Colored
Colored

⊤
⊤
⊤

Directed
Directed

¬Dir ∧ Hyper
¬Dir ∧ Hy ∧ Un
¬Dir ∧ Hy ∧ Un

¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir

¬Dir ∧ ¬Hy
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir

¬Dir ∧ ¬Hy
⊤

graph.cpp

class Node {
string label;

#ifdef COLORED
string color;

#endif
};

class Edge {
#ifdef DIRECTED
Node fromNode, toNode;

#elifdef HYPER
#ifdef UNDIRECTED
set<Node> nodeSet;

#elifdef DIRECTED
map<Node, set<Node>> nodeMap;

#endif
#else
#ifndef DIRECTED
pair<Node, Node> nodePair;

#endif
#endif
};

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 20

Joining the Problem and Solution Space

• right now, we only consider line PCs (from the preprocessor)

• but: a line is only included if its file is included, too
⇒ we also have to consider file PCs (from the build system)

• also: we want to ignore invalid configurations
⇒ we also have to consider the feature model FM

• idea: join feature model, file, and line presence condition:
PClocation := Φ(FM) ∧ PCfile ∧ PCline

Suppose we have the feature model . . .

Graph

Node

Colored

Edge

Directed Undirected Hyper

¬(Directed∧Undirected)∧(Hyper → Undirected)∧(Directed∨Hyper)

. . . and two files: node.cpp . . .

class Node {
string label;

#ifdef COLORED
string color;

#endif
};

. . . and edge.cpp

class Edge {
#ifdef DIRECTED
Node fromNode, toNode;

#elifdef HYPER
#ifdef UNDIRECTED
set<Node> nodeSet;

#elifdef DIRECTED
map<Node, set<Node>> nodeMap;

#endif
#else
#ifndef DIRECTED
pair<Node, Node> nodePair;

#endif
#endif
};

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 21

Joining the Problem and Solution Space

Problem Space

G

N

C

E

D U H

¬(Directed ∧ Undirected)
Hyper → Undirected
Directed ∨ HyperyΦ

Graph ∧ Node ∧ Edge

∧¬(Directed ∧ Undirected)

∧(Hyper → Undirected)

∧(Directed ∨ Hyper)

Solution Space →

File PC node.cpp

No
de

File PC edge.cpp

Ed
ge

Line PCs node.cpp

⊤
⊤

Colored
Colored
Colored

⊤

Line PCs edge.cpp

⊤
Directed
Directed

¬Dir ∧ Hyper
¬Dir ∧ Hy ∧ Un
¬Dir ∧ Hy ∧ Un

¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir

¬Dir ∧ ¬Hy
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir

¬Dir ∧ ¬Hy
⊤

node.cpp

class Node {
string label;

#ifdef COLORED
string color;

#endif
};

edge.cpp

class Edge {
#ifdef DIRECTED
Node fromNode, toNode;

#elifdef HYPER
#ifdef UNDIRECTED
set<Node> nodeSet;

#elifdef DIRECTED
map<Node, set<Node>> nodeMap;

#endif
#else
#ifndef DIRECTED
pair<Node, Node> nodePair;

#endif
#endif
};

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 22

Joining the Problem and Solution Space

Feature-Model Formula

Graph ∧ Node ∧ Edge

∧¬(Directed ∧ Undirected)

∧(Hyper → Undirected)

∧(Directed ∨ Hyper)

File PC edge.cpp

Ed
ge

Line PCs edge.cpp

⊤
Directed
Directed

¬Dir ∧ Hyper
¬Dir ∧ Hy ∧ Un
¬Dir ∧ Hy ∧ Un

¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir
¬Dir ∧ Hy ∧ ¬Un ∧ Dir

¬Dir ∧ ¬Hy
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir
¬Dir ∧ ¬Hy ∧ ¬Dir

¬Dir ∧ ¬Hy
⊤

edge.cpp

class Edge {
#ifdef DIRECTED
Node fromNode, toNode;

#elifdef HYPER
#ifdef UNDIRECTED
set<Node> nodeSet;

#elifdef DIRECTED
map<Node, set<Node>> nodeMap;

#endif
#else
#ifndef DIRECTED
pair<Node, Node> nodePair;

#endif
#endif
};

PClocation := Φ(FM) ∧ PCedge.cpp ∧ PCpair<Node, Node> nodePair;

= G ∧ N ∧ E ∧ ¬(D ∧ U) ∧ (H → U) ∧ (D ∨ H) ∧ E ∧ ¬D ∧ ¬H ∧ ¬D
⇔ G ∧ N ∧ E ∧ ¬(D ∧ U) ∧ (H → U) ∧ (D ∨ H) ∧ E ∧ ¬D ∧ ¬H ∧ ¬D
⇒ (D ∨ H) ∧ ¬D ∧ ¬H
⇒ ⊥ – so this code is dead after all!

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 23

Analyzing Feature Modules

Store

Type

SingleStore MultiStore

AccessControl

Feature-Model Formula

Φ(FM) = Store∧Type∧(SS∨MS)∧
(¬SS ∨ ¬MS)

Valid Configurations

{SS}
{SS,AC}

{MS}
{MS,AC}

Is there dead code? Are there superfluous annotations?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 24

Author: Thomas Thuem

Analyzing Feature Modules

Store

Type

SingleStore MultiStore

AccessControl

Recap: 1:1 Feature Mapping!

Is Are there dead code dead features? Are there superfluous annotations redundant constraints?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 25

Author: Thomas Thuem

Feature-Mapping Analyses in FeatureIDE

demo video available (minute 3 and 4): dead code block,
superfluous annotations, generation of all products, error
propagation, unit testing

Discussion

• we can now identify anomalies:
• dead (unused) code
• mistakes in preprocessor

annotations
• disagreements between problem

and solution space

• but: we only analyze the feature
mapping and ignore the actual code
• pro: simple, language-independent
• con: can only find simple

anomalies

• difficulty depends on the feature
traceability (harder for conditional
compilation than for FOP)

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 26

https://www.youtube.com/watch?v=jVe7f32mLCQ
https://youtu.be/jVe7f32mLCQ?t=125

Analyzing Feature Mappings – Summary

Lessons Learned

• feature-mapping analyses alleviate the impact
of code scattering and tangling

• they are usually not necessary when there is
good feature traceability

• they cannot detect bugs in the actual code

Further Reading

• Apel et al. 2013, Chapter 10

Practice

Above, we assumed that we know all presence con-
ditions already. How can we automatically extract
presence conditions from code that uses the C pre-
processor? What problems might occur?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10b. Analyzing Feature Mappings 27

https://link.springer.com/book/10.1007/978-3-642-37521-7

10. Product-Line Analyses

10a. Analysis Strategies

10b. Analyzing Feature Mappings

10c. Analyzing Variable Code

Automated Analysis of Variable Code

Variability-Aware Type Checking

Analyzing Feature Modules

Analyzing Conditional Compilation

Discussion

Product-Line Analyses in the Wild

Summary

FAQ

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 28

Automated Analysis of Variable Code

Asking Questions About
the Feature Mapping . . .

• Are there contradictory or unnecessary
preprocessor annotations in the code?

• Is the code even included in any product?

• If so, in how many products is the code
included?

• . . .

only finds code-agnostic anomalies

. . . and the Variable Code

• Can every product be generated (e.g., compiled)?
⇒ to find all syntax and type errors

• Do all tests succeed for every product?
⇒ to find some runtime and logic errors

• Does every product adhere to its specification?
⇒ to rule out runtime and logic errors

• . . .

now: analyze (non-)functional properties of all products

Today’s Example

type checking for FOP and conditional compilation

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 29

Variability-Aware Type Checking – Analyzing Feature Modules

Store

Type

SingleStore MultiStore

AccessControl

Feature-Model Formula

Φ(FM) = Store ∧ Type ∧ (SS ∨ MS) ∧
(¬SS ∨ ¬MS)

Valid Configurations

{SS}
{SS,AC}

{MS}
{MS,AC}

Is there a type error in any product?
What about {SS,AC}?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 30

Author: Thomas Thuem

Variability-Aware Type Checking – Analyzing Feature Modules

Reachability Condition of id

guarantees that a given reference to
id is also defined somewhere:

Φ(FM)⇒ (PC id
ref →

∨
def PC

id
def)

or, with a SAT solver:
¬SAT (Φ(FM) ∧ PCref ∧

∧
def ¬PCdef)

Φ(FM)⇒ (AC → SS ∨MS) holds,
Φ(FM)⇒ (AC → MS) does not

⇒ {SS ,AC} has no readAll!

Type-Safe Product-Line

in a type-safe SPL, all references
must always be defined (i.e., all
reachability conditions must hold)
. . . and many more conditions . . .

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 31

Author: Thomas Thuem

Variability-Aware Type Checking – Analyzing Conditional Compilation

Graph

Directed Undirected Hyper

¬(Directed ∧ Undirected)
Hyper → Undirected
Directed ∨ Hyper

Reachability Condition of id

Φ(FM)⇒ (PC id
ref →

∨
def PC

id
def)

Conflict Condition of id , def’s di

guarantees that no definition of id
conflicts with another:

Φ(FM)⇒
∧

d1 ̸=d2
¬(PC id

d1
∧PC id

d2
))

Is e.nodes reachable?

Φ(FM) ⇒ (⊤ →
Dir∨(Hy∧Un)∨(Hy∧Dir))

holds, because each graph is
directed or an (undirected) hy-
pergraph

Does e.nodes conflict?

Φ(FM) ⇒ (
¬(Dir ∧ (Hy ∧ Un))
∧ ¬(Dir ∧ (Hy ∧ Dir))
∧¬((Hy∧Un)∧(Hy∧Dir)))

holds, because a graph is never
directed and an (undirected)
hypergraph at the same time

all reachable, no conflicts

graph.cpp

class Node { ... };

class Edge {
#ifdef DIRECTED
pair<Node, Node> nodes;

#endif
#ifdef HYPER
#ifdef UNDIRECTED
set<Node> nodes;

#endif
#ifdef DIRECTED
map<Node, set<Node>> nodes;

#endif
#endif
};

std::ostream& operator<<(
std::ostream &s, const Edge &e) {
return s << e.nodes;

}

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 32

Variability-Aware Type Checking – Discussion

Just the Tip of the Iceberg

• here, we only discussed reachability and conflict
conditions

• but: actual type checking requires a table of all
identifiers, their types, and their PCs (and a lot
more SAT queries)

• the practical difficulty depends:
• FOP (due to superimposition)
⇒ no conflict conditions required

• good feature traceability (e.g., FOP)
⇒ trivial PCs, simpler implementation

• ignoring the feature model
⇒ better performance (false positives!)

The TypeChef Project [Kästner et al. 2011]

• a variability-aware lexer, parser framework, and
type system for C code with #ifdef’s

• skips preprocessing, instead builds an abstract
syntax tree (AST) annotated with presence
conditions

• poster with examples

• does it scale?

Busybox (811 features): “We need 57 minutes to type

check all modules.” [ref]

Linux (6065 features): “We successfully parsed [it in]

roughly 85 hours on a single machine.” [ref]

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 33

https://dl.acm.org/doi/10.1145/2048066.2048128
https://ckaestne.github.io/TypeChef/typechef-poster.png
https://dl.acm.org/doi/10.1145/2384616.2384673
https://dl.acm.org/doi/10.1145/2048066.2048128

Product-Line Analyses in the Wild – Product-Line Complexity

Six Classes of Product-Line Complexity [Thüm 2021]

In a timeframe of 24h . . .

NC Products cannot be generated automatically

C1 All products can be generated and tested

C2 Not C1, but all products can be generated

C3 Not C2, but all configurations can be
generated (AllSAT)

C4 Not C3, but the number of valid
configurations can be computed (#SAT)

C5 Not C4, but whether there is a valid
configuration can be computed (SAT)

C6 It cannot be computed whether there is a valid
configuration

Examples

NC all product lines with mandatory custom
development in application engineering
(e.g., components and services with glue code,
white-box frameworks)

C1 < 2000 products for 1 min per product

C2 < 90000 products for 1 s per product

C3 < 1013 configurations for 1 ns per configuration

C4 older versions of Linux/Automotive05

C5 newer versions of Linux/Automotive05
(see Sundermann et al. 2020)

C6 No example known

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 34

https://youtu.be/qUuRp7_d0rU?t=1651
https://raw.githubusercontent.com/SoftVarE-Group/Papers/main/2020/2020-VaMoS-Sundermann.pdf

Product-Line Analyses in the Wild – Automated Analysis . . .

Lecture 4c

. . . of Feature Models

analyze only the feature model

Lecture 10b

. . . of Feature Mappings

analyze the feature mapping
(considering the feature model)

Lecture 10c

. . . of Variable Code

analyze the variable code (con-
sidering the feature model and
feature mapping)

• void, core/dead features

• decision propagation

• atomic sets, redundant
constraints

• . . .

• dead code

• superfluous annotations

• degree of code scattering
and tangling

• . . .

• parsing, type checking

• static analysis

• model checking, theorem
proving

• . . .

here: family-based analysis strategies for conditional compilation and
feature-oriented programming

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 35

Analyzing Variable Code – Summary

Lessons Learned

• with family-based analyses of variable code, we
can analyze (non-)functional properties of all
products at once

• type checking all products at once is possible
for product lines up to medium size

• for huge product lines (e.g., Linux), it is
infeasible

Further Reading

• Apel et al. 2013, Chapter 10

• Kästner et al. 2011

Practice

Suppose you have a preprocessor-based product
line (with #ifdef’s). If you could turn it into a
single, large runtime-variable product (with if’s),
you could use an off-the-shelf compiler to find any
type error in any product.

Is this possible? What problems might occur?

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 36

https://link.springer.com/book/10.1007/978-3-642-37521-7
https://dl.acm.org/doi/10.1145/2048066.2048128

FAQ – 10. Product-Line Analyses

Lecture 10a

• How to find variability bugs?

• What is a program analysis? What
are examples?

• What is a product-line analysis?

• What are principal strategies to
analyze product lines? What are
(dis-)advantages?

• Given a specific algorithm, classify
its analysis strategy!

Lecture 10b

• How to analyze feature mappings?

• What are potential problems in
feature mappings?

• What are presence conditions, dead
code, superfluous annotations?

• Shall we incorporate the feature
model when analyzing feature
mappings?

• Shall product-line analyses analyze
problem and solution space
separately?

• What is special when analyzing the
feature mapping of feature modules?

• What are limitations of analyzing
feature mappings?

• Given CPP source code, determine
its presence conditions, dead code,
and superfluous annotations!

Lecture 10c

• What are (examples of) type errors?

• Why are type errors challenging to
detect in product lines?

• What is a type-safe product line,
reachability condition, conflict
condition?

• How does the analysis complexity
differ for real-world product lines?

• What are analyses for problem and
solution space?

• Give examples for easy and difficult
product lines in terms of analysis
effort!

Elias Kuiter, Thomas Thüm, Timo Kehrer Software Product Lines – 10. Product-Line Analyses – 10c. Analyzing Variable Code 37

	
	Analysis Strategies
	Recap: Quality Assurance
	Automated Analysis of Product Lines
	Product-Based Strategies
	Feature-Based Strategies
	Family-Based Strategies
	Classification of Strategies
	Summary

	Analyzing Feature Mappings
	Automated Analysis of Feature Mappings
	Presence Conditions
	Detecting Dead Code
	Detecting Superfluous Annotations
	Joining the Problem and Solution Space
	Analyzing Feature Modules
	Feature-Mapping Analyses in FeatureIDE
	Summary

	Analyzing Variable Code
	Automated Analysis of Variable Code
	Variability-Aware Type Checking
	Product-Line Analyses in the Wild
	Summary
	FAQ

