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#SAT(        )?void, dead, AS, DP… URS, F. Prio…

Chico Sundermann, Michael Nieke, Paul M. Bittner, Tobias Heß, Thomas Thüm, and Ina Schaefer. 2021. Applications of #SAT Solvers on Feature Models.
In VaMoS'21. ACM, NY, USA, Article 12, 1–10.
 



Distributive

How to transform feature
model formulas into CNF?

Is this a threat to validity
for SPL analysis research?

Tseitin Plaisted-Greenbaum Boy de la Tour Velev Jackson-Sheridan Chambers et al.
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Alouneh, S., Abed, S., Al Shayeji, M.H. et al. A comprehensive study and analysis on SAT-solvers: advances, usages and achievements. Artif Intell Rev 52, 2575–2601 (2019).
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Distributive Transformation Tseitin Transformation

Idea:  Apply distributive and
De Morgan’s laws

Idea:  Use  ↔ to define variables
(“shortcuts”) for subformulas

Example:

…

…

…

Properties:

- preserves equivalence

- easy to implement

- exponential space complexity

Example:

Properties:

- preserves assignments + count

- introduces artificial variables

- linear space complexity

Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus. In Automation of reasoning (pp. 466-483). Springer, Berlin, Heidelberg.
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Distributive Transformation Tseitin Transformation Plaisted-Greenbaum Trans.

Idea:  Apply distributive and
De Morgan’s laws

Idea:  Use  ↔ to define variables
(“shortcuts”) for subformulas

Idea:  Like Tseitin, but using →
(“half-definitions”)

Example:

…

…

…

Properties:

- preserves equivalence

- easy to implement

- exponential space complexity

Example:

Properties:

- preserves assignments + count

- introduces artificial variables

- linear space complexity

Example:

Properties:

- preserves assignments

- does not preserve count

- requires less space than Tseitin

often mixed up

Plaisted, D. A., & Greenbaum, S. (1986). A structure-preserving clause form translation. Journal of Symbolic Computation, 2(3), 293-304.
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Research Questions

1. Does the CNF transfomation influence

the performance of SAT and #SAT-based analyses?

2. Does this influence depend on the …

a. size of the feature model (do larger models imply larger performance differences)?

b. size increase of the formula (is it costly to introduce variables/literals)?

3. Does the CNF transformation affect the correctness of #SAT-based analyses?
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Subject Systems
Berger et al. 2013
Kconfig-based feature models
Current versions of 9 FOSS systems:
axTLS, Buildroot, BusyBox, EmbToolkit, Fiasco,
Freetz-NG, Linux, toybox, uClibc-ng

Knüppel et al. 2017
Large feature models (w/ tree)
4 automotive and 8 FOSS systems:
axTLS, BusyBox, eCos/CDL (3), EmbToolkit,
Linux, uClibc, uClinux-base/distribution

5T. Berger, S. She, R. Lotufo, A. Wasowski and K. Czarnecki, "A Study of Variability Models and Languages in the Systems Software Domain," in IEEE Transactions on Software Engineering, 
vol. 39, no. 12, pp. 1611-1640, Dec. 2013, doi: 10.1109/TSE.2013.34.



Subject Systems
Berger et al. 2013
Kconfig-based feature models
Current versions of 9 FOSS systems:
axTLS, Buildroot, BusyBox, EmbToolkit, Fiasco,
Freetz-NG, Linux, toybox, uClibc-ng

Knüppel et al. 2017
Large feature models (w/ tree)
4 automotive and 8 FOSS systems:
axTLS, BusyBox, eCos/CDL (3), EmbToolkit,
Linux, uClibc, uClinux-base/distribution

5Knüppel, A., Thüm, T., Mennicke, S., Meinicke, J., & Schaefer, I. (2017, August). Is there a mismatch between real-world feature models and product-line research?.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 291-302).
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Experimental Setup 3 iterations

180s timeout
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SAT and #SAT Solvers
www.satcompetition.org, SAT Heritage
International SAT Competition
18 SAT solvers (winners in main track 2002-2021):
zchaff (2), Forklift, SatELiteGTI, MiniSat, RSat,
precosat, CryptoMiniSat, glucose (2),
lingeling (2), Maple (4), Kissat (2)

Sundermann et al. 2020
Evaluating #SAT solvers
5 exact #SAT solvers:
countAntom, d4, dSharp, GANAK, sharpSAT

7http://www.satcompetition.org/
https://github.com/sat-heritage/docker-images/ 
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https://github.com/sat-heritage/docker-images/


SAT and #SAT Solvers
www.satcompetition.org, SAT Heritage
International SAT Competition
18 SAT solvers (winners in main track 2002-2021):
zchaff (2), Forklift, SatELiteGTI, MiniSat, RSat,
precosat, CryptoMiniSat, glucose (2),
lingeling (2), Maple (4), Kissat (2)

Sundermann et al. 2020
Evaluating #SAT solvers
5 fastest exact #SAT solvers:
countAntom, d4, dSharp, GANAK, sharpSAT

7Chico Sundermann, Thomas Thüm, and Ina Schaefer. 2020. Evaluating #SAT solvers on industrial feature models. In VAMOS '20. ACM, NY, USA, Article 3, 1–9.
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RQ1: Performance of SAT and #SAT

Log. SAT time relative to Z3

Solve times differ, 
depending on the model 
and solver class.

Distributive fails on 
many models, Z3 doesn’t.

Log. #SAT time relative to Z3
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RQ2a: Feature Model Size

For larger models, the 
difference in SAT solve 
time is larger.

For #SAT, no clear trend 
is visible.

Distributive tends to fail 
on larger models (but not 
always).
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RQ2b: Formula Size Increase
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RQ2b: Formula Size Increase

Introducing literals 
large-scale  slows down 
SAT solve time.

For #SAT, no clear trend 
is visible.

10Log. introduced literals (%) for SAT Log. introduced literals (%) for #SAT
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KConfigReader distorts the 
model count, FIDE/Z3 don’t.

10 mio.

Oh, J., Batory, D.S., Heule, M.J., Myers, M., & Gazzillo, P. (2019). Uniform Sampling from Kconfig Feature Models. Technical Report.
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- We do not account for non-Boolean (e.g., numeric) variability
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Perspective

- External threats to validity
- We only evaluated specific implementations

→ cannot draw conclusions about transformations themselves

- We chose specific systems/extractors/transformations/solvers

- We do not account for non-Boolean (e.g., numeric) variability

- Future work
- Controlled, parametrized evaluation of all three transformations

by implementing them all in Z3 and KConfigReader

→ make recommendations for which transformation to choose

- Artifact: Reproducible model extraction pipeline (VM-based, Docker-based WIP) 

https://github.com/ekuiter/feature-model-repository-pipeline
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Conclusion
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https://github.com/ekuiter/feature-model-repository-pipeline
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Results: Differences between Solvers
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