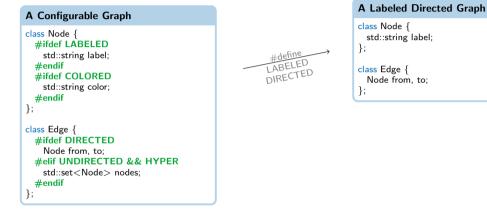


Tseitin or not Tseitin?

The Impact of CNF Transformations on Feature-Model Analyses

ASE 2022 — October 10–14 — Rochester, Michigan <u>Elias Kuiter</u>¹, Sebastian Krieter², Chico Sundermann², Thomas Thüm², Gunter Saake¹ ¹Otto-von-Guericke University Magdeburg, Germany, ²University of Ulm, Germany

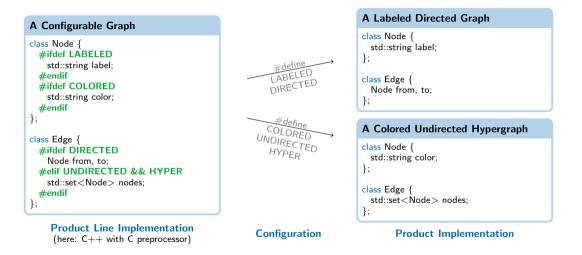


Implementing Configurable Software Systems

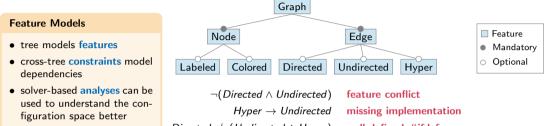
```
A Configurable Graph
class Node {
  #ifdef LABELED
   std::string label;
  #endif
  #ifdef COLORED
   std::string color:
 #endif
};
class Edge {
  #ifdef DIRECTED
   Node from, to:
  #elif UNDIRECTED && HYPER
   std::set<Node> nodes:
 #endif
};
```

Product Line Implementation (here: C++ with C preprocessor)

Implementing Configurable Software Systems

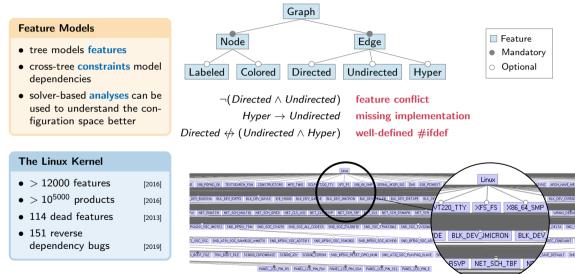


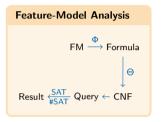
Product Line Implementation (here: C++ with C preprocessor)

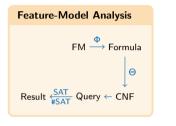

Configuration

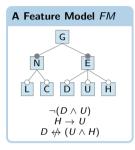
Product Implementation

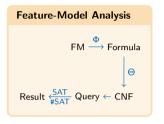
Implementing Configurable Software Systems

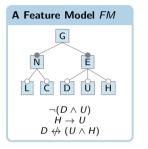

Modeling Features and their Dependencies

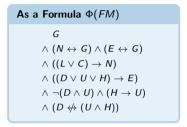


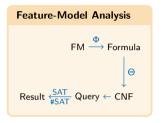

Directed \leftrightarrow (Undirected \wedge Hyper)

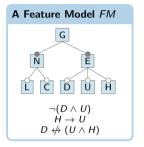

well-defined #ifdef

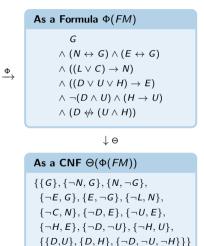

Modeling Features and their Dependencies

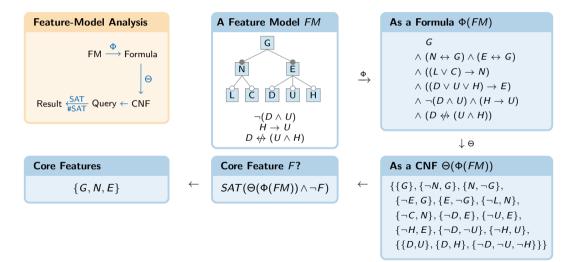


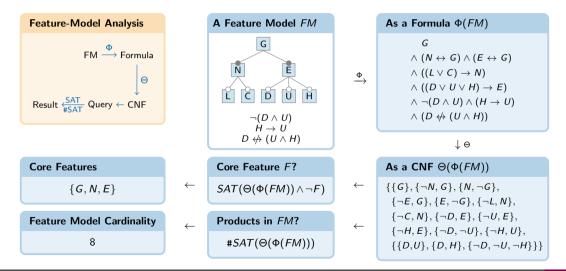


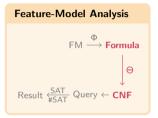


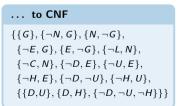


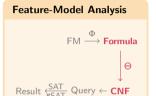



Φ,






Often Overlooked: Conjunctive Normal Form (CNF)


From Formula ...

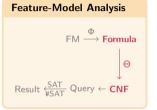
G $\land (N \leftrightarrow G) \land (E \leftrightarrow G)$ $\land ((L \lor C) \rightarrow N)$ $\land ((D \lor U \lor H) \rightarrow E)$ $\land \neg (D \land U) \land (H \rightarrow U)$ $\land (D \notin (U \land H))$

 $\downarrow \Theta$

Often Overlooked: Conjunctive Normal Form (CNF)

Conjunctive Normal Form

- conjunction ∧ of disjunctions ∨ of literals X, ¬X
- here: a set of clauses, which are sets of literals
- used by almost all solvers


From Formula ...

G $\land (N \leftrightarrow G) \land (E \leftrightarrow G)$ $\land ((L \lor C) \rightarrow N)$ $\land ((D \lor U \lor H) \rightarrow E)$ $\land \neg (D \land U) \land (H \rightarrow U)$ $\land (D \Leftrightarrow (U \land H))$

 $\downarrow \Theta$

to CNF
$\{\{G\}, \{\neg N, G\}, \{N, \neg G\}, \{N, \neg G\}, \}$
$\{\neg E, G\}, \{E, \neg G\}, \{\neg L, N\}, \{\neg C, N\}, \{\neg D, E\}, \{\neg U, E\}, $
$\{\neg U, N\}, \{\neg D, D, \downarrow\}, \{\neg U, L\}, \{\neg H, U\}, \{$
$\{\{D,U\}, \{D,H\}, \{\neg D, \neg U, \neg H\}\}\}$

Often Overlooked: Conjunctive Normal Form (CNF)

Conjunctive Normal Form

- conjunction ∧ of disjunctions ∨ of literals X, ¬X
- here: a set of clauses, which are sets of literals
- used by almost all solvers

From Formula ...

G $\land (N \leftrightarrow G) \land (E \leftrightarrow G)$ $\land ((L \lor C) \rightarrow N)$ $\land ((D \lor U \lor H) \rightarrow E)$ $\land \neg (D \land U) \land (H \rightarrow U)$ $\land (D \Leftrightarrow (U \land H))$

 $\downarrow \Theta$

Our Goal: Raise Awareness for CNF Transformations

- how to transform feature-model formulas into CNF?
 ⇒ describe and classify CNF transformations
- does this impact the work of practitioners and researchers?
 ⇒ evaluate efficiency and correctness on feature models

... to CNF

$$\begin{split} & \{ \{G\}, \{\neg N, G\}, \{N, \neg G\}, \\ & \{\neg E, G\}, \{E, \neg G\}, \{\neg L, N\}, \\ & \{\neg C, N\}, \{\neg D, E\}, \{\neg U, E\}, \\ & \{\neg H, E\}, \{\neg D, \neg U\}, \{\neg H, U\}, \\ & \{\{D, U\}, \{D, H\}, \{\neg D, \neg U, \neg H\}\} \end{split}$$

CNF Transformations

Distributive $\Theta = D$

apply laws of logic (De Morgan's laws and distributivity)

 $D \notin (U \land H)$ $\stackrel{D}{\longrightarrow} (D \lor (U \land H)) \land (\neg D \lor \neg (U \land H))$ $\stackrel{D}{\longrightarrow} \{\{D, U\}, \{D, H\}, \{\neg D, \neg U, \neg H\}\}$

✓ equivalence

SAT ✓, #*SAT* = 4

- $\checkmark\,$ easy to implement
- × exponential complexity

CNF Transformations

Distributive $\Theta = D$

apply laws of logic (De Morgan's laws and distributivity) **Tseitin** $\Theta = T$ ['83]

abbreviate a subformula ϕ with an auxiliary variable $\mathbf{x}_{\phi} \leftrightarrow \phi$

 $\begin{array}{l} D \not\Leftrightarrow (U \land H) \\ \xrightarrow{D} (D \lor (U \land H)) \land (\neg D \lor \neg (U \land H)) \\ \xrightarrow{D} \{\{D, U\}, \{D, H\}, \{\neg D, \neg U, \neg H\}\} \end{array}$

 $D \notin (U \land H)$ $\xrightarrow{T} (D \notin x) \land x \leftrightarrow (U \land H)$ $\xrightarrow{D} \{\{D, x\}, \{\neg D, \neg x\}, \{\neg x, U\}, \{\neg x, H\}, \{\neg U, \neg H, x\}\}$

✓ equivalence SAT ✓, #SAT=4

- $\checkmark\,$ easy to implement
- × exponential complexity

✓ quasi-equivalence SAT ✓, #SAT = 4

- ✓ linear complexity
- \times take care of new variables

CNF Transformations

Distributive $\Theta = D$

apply laws of logic (De Morgan's laws and distributivity)

 $\begin{array}{l} D \not\Leftrightarrow (U \land H) \\ \xrightarrow{D} (D \lor (U \land H)) \land (\neg D \lor \neg (U \land H)) \\ \xrightarrow{D} \{\{D, U\}, \{D, H\}, \{\neg D, \neg U, \neg H\}\} \end{array}$

Tseitin $\Theta = T$ [83] abbreviate a subformula ϕ with an auxiliary variable $x_{\phi} \leftrightarrow \phi$

 $D \notin (U \land H)$ $\xrightarrow{T} (D \notin x) \land x \leftrightarrow (U \land H)$ $\xrightarrow{D} \{\{D, x\}, \{\neg D, \neg x\}, \{\neg x, U\}, \{\neg x, H\}, \{\neg U, \neg H, x\}\}$

✓ equivalence SAT ✓, #SAT=4

- $\checkmark\,$ easy to implement
- × exponential complexity

✓ quasi-equivalence SAT ✓, #SAT = 4

- ✓ **linear** complexity
- \times take care of new variables

Plaisted-Greenbaum $\Theta = PG$ [86] abbreviate a subformula ϕ with an auxiliary variable $x_{\phi} \rightarrow \phi$

$$\begin{array}{c} D \not\leftrightarrow (U \land H) \\ \xrightarrow{PG} (D \not\Leftrightarrow x) \land x \to (U \land H) \\ \xrightarrow{D} \{\{D, x\}, \{\neg D, \neg x\}, \{\neg x, U\}, \\ \{\neg x, H\}\} \end{array}$$

✓ equi-assignability SAT ✓
 ✓ linear complexity < T

X equi-countability #SAT = 5

Evaluation

Research Questions

- RQ1 efficiency of CNF transformations?
- **RQ2** CNF transformation \rightarrow efficiency of analyses?
- **RQ3** CNF transformation \rightarrow correctness of analyses?

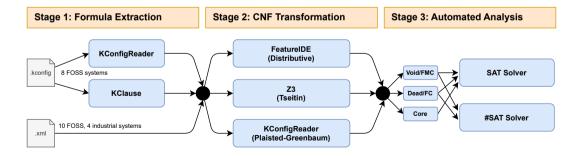
Evaluation

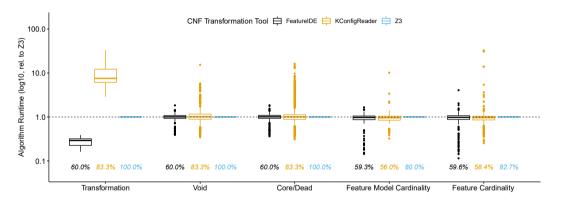
Research Questions

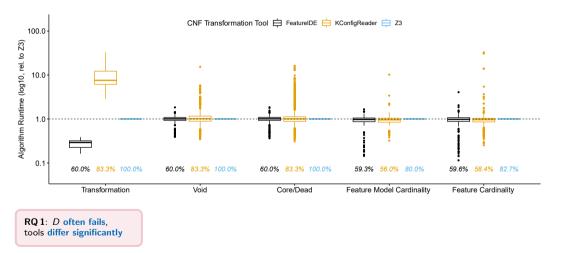
- RQ1 efficiency of CNF transformations?
- **RQ2** CNF transformation \rightarrow efficiency of analyses?
- **RQ3** CNF transformation \rightarrow correctness of analyses?

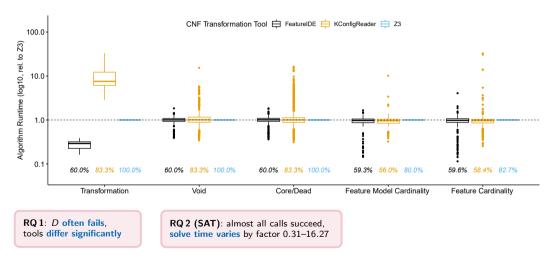
Experimental Setup

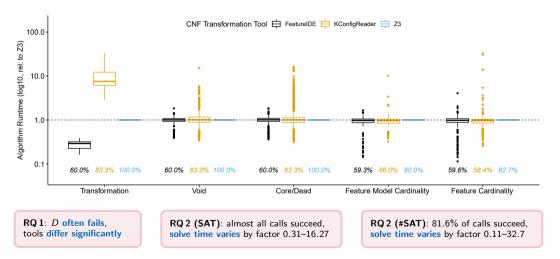
- 22 configurable software systems
- 3 CNF transformation tools
- 23 SAT and #SAT solvers

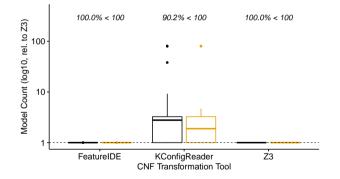

Evaluation

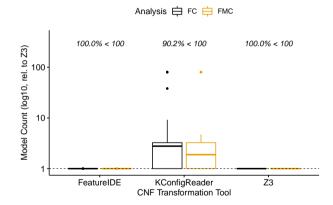

Research Questions


- RQ1 efficiency of CNF transformations?
- **RQ2** CNF transformation \rightarrow efficiency of analyses?
- **RQ3** CNF transformation \rightarrow correctness of analyses?


Experimental Setup

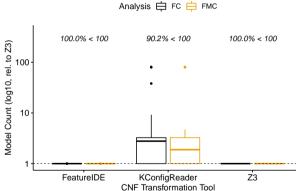

- 22 configurable software systems
- 3 CNF transformation tools
- 23 SAT and #SAT solvers





Correctness of #SAT-Based Analyses (RQ 3)

Analysis 🖨 FC 븑 FMC


Correctness of #SAT-Based Analyses (RQ 3)

RQ 3

- with PG, ≈ 70% of #SAT calls return incorrect results
- incorrect by factor \approx 3 (median)
- incorrect by factor $pprox 10^{77}$ (worst)

Correctness of #SAT-Based Analyses (RQ 3)

RQ3

- with PG, ≈ 70% of #SAT calls return incorrect results
- incorrect by factor \approx 3 (median)
- incorrect by factor $\approx 10^{77}$ (worst)

Our Recommendations

- **RQ1** D for small, T for large models
- RQ3 do not use PG for #SAT

Conclusion

The Impact of CNF Transformations on Feature-Model Analyses

Distributive	Tseitin	Plaisted-Greenbaum
apply laws of logic	abbreviate ϕ with $x_\phi \leftrightarrow \phi$	abbreviate ϕ with $x_\phi ightarrow \phi$
 ✓ equivalence ✓ easy to implement × exponential complexity 	 ✓ quasi-equivalence ✓ linear complexity × take care of new variables 	 ✓ equi-assignability ✓ linear complexity × equi-countability
FeatureIDE	Z3	KConfigReader
often fails on large models	succeeds correctly on all models	often incorrect for #SAT calls

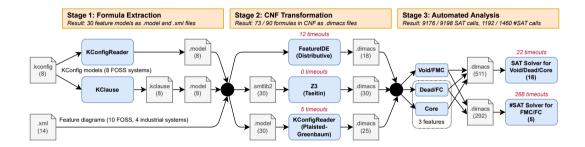
Conclusion

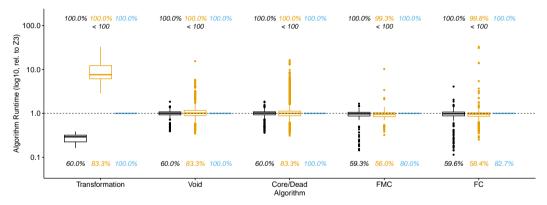
The Impact of CNF Transformations on Feature-Model Analyses

Distributive	Tseitin	Plaisted-Greenbaum
apply laws of logic	abbreviate ϕ with $x_{\phi} \leftrightarrow \phi$	abbreviate ϕ with $x_\phi ightarrow \phi$
✓ equivalence	✓ quasi-equivalence	🗸 equi-assignability
✓ easy to implement	✓ linear complexity	✓ linear complexity
× exponential complexity	× take care of new variables	× equi-countability
FeatureIDE	Z3	KConfigReader
often fails on large models	succeeds correctly on all models	often incorrect for #SAT calls

Tseitin or not Tseitin?

Conclusion


The Impact of CNF Transformations on Feature-Model Analyses


Distributive	Tseitin	Plaisted-Greenbaum
apply laws of logic	abbreviate ϕ with $x_{\phi} \leftrightarrow \phi$	abbreviate ϕ with $x_\phi o \phi$
✓ equivalence	✓ quasi-equivalence	🗸 equi-assignability
✓ easy to implement	✓ linear complexity	✓ linear complexity
× exponential complexity	× take care of new variables	× equi-countability
FeatureIDE	Z3	KConfigReader
often fails on large models	succeeds correctly on all models	often incorrect for #SAT calls

Tseitin or not Tseitin? \Rightarrow Yes!

find out more:

https://github.com/ekuiter/tseitin-or-not-tseitin

CNF Transformation Tool 🛱 FeatureIDE 📅 KConfigReader 📅 Z3