
Photo: Hannah Theile (OVGU)

Tseitin or not Tseitin?

The Impact of CNF Transformations on Feature-Model Analyses

ASE 2022 — October 10–14 — Rochester, Michigan

Elias Kuiter1, Sebastian Krieter2, Chico Sundermann2, Thomas Thüm2, Gunter Saake1

1Otto-von-Guericke University Magdeburg, Germany, 2University of Ulm, Germany

Implementing Configurable Software Systems

A Configurable Graph

class Node {
#ifdef LABELED

std::string label;
#endif
#ifdef COLORED

std::string color;
#endif
};

class Edge {
#ifdef DIRECTED

Node from, to;
#elif UNDIRECTED && HYPER

std::set<Node> nodes;
#endif
};

#define

LABELED

DIRECTED

#defineCOLOREDUNDIRECTEDHYPER

A Labeled Directed Graph

class Node {
std::string label;
};

class Edge {
Node from, to;
};

A Colored Undirected Hypergraph

class Node {
std::string color;
};

class Edge {
std::set<Node> nodes;
};

Product Line Implementation
(here: C++ with C preprocessor)

Configuration Product Implementation

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 2

Implementing Configurable Software Systems

A Configurable Graph

class Node {
#ifdef LABELED

std::string label;
#endif
#ifdef COLORED

std::string color;
#endif
};

class Edge {
#ifdef DIRECTED

Node from, to;
#elif UNDIRECTED && HYPER

std::set<Node> nodes;
#endif
};

#define

LABELED

DIRECTED

#defineCOLOREDUNDIRECTEDHYPER

A Labeled Directed Graph

class Node {
std::string label;
};

class Edge {
Node from, to;
};

A Colored Undirected Hypergraph

class Node {
std::string color;
};

class Edge {
std::set<Node> nodes;
};

Product Line Implementation
(here: C++ with C preprocessor)

Configuration Product Implementation

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 2

Implementing Configurable Software Systems

A Configurable Graph

class Node {
#ifdef LABELED

std::string label;
#endif
#ifdef COLORED

std::string color;
#endif
};

class Edge {
#ifdef DIRECTED

Node from, to;
#elif UNDIRECTED && HYPER

std::set<Node> nodes;
#endif
};

#define

LABELED

DIRECTED

#defineCOLOREDUNDIRECTEDHYPER

A Labeled Directed Graph

class Node {
std::string label;
};

class Edge {
Node from, to;
};

A Colored Undirected Hypergraph

class Node {
std::string color;
};

class Edge {
std::set<Node> nodes;
};

Product Line Implementation
(here: C++ with C preprocessor)

Configuration Product Implementation

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 2

Modeling Features and their Dependencies

Feature Models

• tree models features

• cross-tree constraints model
dependencies

• solver-based analyses can be
used to understand the con-
figuration space better

Graph

Node

Labeled Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected) feature conflict

Hyper → Undirected missing implementation

Directed ↔/ (Undirected ∧ Hyper) well-defined #ifdef

Feature

Mandatory

Optional

The Linux Kernel

• > 12000 features [2016]

• > 105000 products [2016]

• 114 dead features [2013]

• 151 reverse
dependency bugs [2019]

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 3

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines/tree/fe99a3c/pics/linux
https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines/tree/fe99a3c/pics/linux
https://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://paulgazzillo.com/papers/esecfse21.pdf
https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Modeling Features and their Dependencies

Feature Models

• tree models features

• cross-tree constraints model
dependencies

• solver-based analyses can be
used to understand the con-
figuration space better

Graph

Node

Labeled Colored

Edge

Directed Undirected Hyper

¬(Directed ∧ Undirected) feature conflict

Hyper → Undirected missing implementation

Directed ↔/ (Undirected ∧ Hyper) well-defined #ifdef

Feature

Mandatory

Optional

The Linux Kernel

• > 12000 features [2016]

• > 105000 products [2016]

• 114 dead features [2013]

• 151 reverse
dependency bugs [2019]

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 3

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines/tree/fe99a3c/pics/linux
https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines/tree/fe99a3c/pics/linux
https://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://paulgazzillo.com/papers/esecfse21.pdf
https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

Analyzing Feature Models with SAT and #SAT Solvers

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

A Feature Model FM

G

N

L C

E

D U H

¬(D ∧ U)
H → U

D ↔/ (U ∧ H)

Φ−→

As a Formula Φ(FM)

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Core Features

{G ,N,E}

Feature Model Cardinality

8

←

←

Core Feature F?

SAT (Θ(Φ(FM))∧¬F)

Products in FM?

#SAT (Θ(Φ(FM)))

←

←

As a CNF Θ(Φ(FM))

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 4

Often Overlooked: Conjunctive Normal Form (CNF)

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

Conjunctive Normal Form

• conjunction ∧ of disjunc-
tions ∨ of literals X , ¬X

• here: a set of clauses,
which are sets of literals

• used by almost all solvers

From Formula . . .

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Our Goal: Raise Awareness for CNF Transformations

• how to transform feature-model formulas into CNF?
⇒ describe and classify CNF transformations

• does this impact the work of practitioners and researchers?
⇒ evaluate efficiency and correctness on feature models

. . . to CNF

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Often Overlooked: Conjunctive Normal Form (CNF)

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

Conjunctive Normal Form

• conjunction ∧ of disjunc-
tions ∨ of literals X , ¬X

• here: a set of clauses,
which are sets of literals

• used by almost all solvers

From Formula . . .

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Our Goal: Raise Awareness for CNF Transformations

• how to transform feature-model formulas into CNF?
⇒ describe and classify CNF transformations

• does this impact the work of practitioners and researchers?
⇒ evaluate efficiency and correctness on feature models

. . . to CNF

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

Often Overlooked: Conjunctive Normal Form (CNF)

Feature-Model Analysis

FM Formula

Result Query CNF

Φ

Θ

SAT
#SAT

Conjunctive Normal Form

• conjunction ∧ of disjunc-
tions ∨ of literals X , ¬X

• here: a set of clauses,
which are sets of literals

• used by almost all solvers

From Formula . . .

G

∧ (N ↔ G) ∧ (E ↔ G)

∧ ((L ∨ C)→ N)

∧ ((D ∨ U ∨ H)→ E)

∧ ¬(D ∧ U) ∧ (H → U)

∧ (D ↔/ (U ∧ H))

↓ Θ

Our Goal: Raise Awareness for CNF Transformations

• how to transform feature-model formulas into CNF?
⇒ describe and classify CNF transformations

• does this impact the work of practitioners and researchers?
⇒ evaluate efficiency and correctness on feature models

. . . to CNF

{{G}, {¬N,G}, {N,¬G},
{¬E ,G}, {E ,¬G}, {¬L,N},
{¬C ,N}, {¬D, E}, {¬U, E},
{¬H, E}, {¬D,¬U}, {¬H,U},
{{D,U}, {D,H}, {¬D,¬U,¬H}}}

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 5

CNF Transformations

Distributive Θ = D

apply laws of logic (De Mor-
gan’s laws and distributivity)

Tseitin Θ = T [’83]

abbreviate a subformula φ with
an auxiliary variable xφ ↔ φ

Plaisted-Greenbaum Θ = PG [’86]

abbreviate a subformula φ with
an auxiliary variable xφ → φ

D ↔/ (U ∧ H)

D−→(D∨(U∧H))∧(¬D∨¬(U∧H))

D−→{{D,U},{D,H},{¬D,¬U,¬H}}

D ↔/ (U ∧ H)

T−→ (D ↔/ x) ∧ x ↔ (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}, {¬U,¬H, x}}

D ↔/ (U ∧ H)

PG−−→ (D ↔/ x) ∧ x → (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}}

3 equivalence
SAT 3, #SAT = 4

3 easy to implement

5 exponential complexity

3 quasi-equivalence
SAT 3, #SAT = 4

3 linear complexity

5 take care of new variables

3 equi-assignability SAT 3

3 linear complexity < T

5 equi-countability #SAT = 5

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 6

https://link.springer.com/chapter/10.1007/978-3-642-81955-1_28
https://www.sciencedirect.com/science/article/pii/S0747717186800281

CNF Transformations

Distributive Θ = D

apply laws of logic (De Mor-
gan’s laws and distributivity)

Tseitin Θ = T [’83]

abbreviate a subformula φ with
an auxiliary variable xφ ↔ φ

Plaisted-Greenbaum Θ = PG [’86]

abbreviate a subformula φ with
an auxiliary variable xφ → φ

D ↔/ (U ∧ H)

D−→(D∨(U∧H))∧(¬D∨¬(U∧H))

D−→{{D,U},{D,H},{¬D,¬U,¬H}}

D ↔/ (U ∧ H)

T−→ (D ↔/ x) ∧ x ↔ (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}, {¬U,¬H, x}}

D ↔/ (U ∧ H)

PG−−→ (D ↔/ x) ∧ x → (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}}

3 equivalence
SAT 3, #SAT = 4

3 easy to implement

5 exponential complexity

3 quasi-equivalence
SAT 3, #SAT = 4

3 linear complexity

5 take care of new variables

3 equi-assignability SAT 3

3 linear complexity < T

5 equi-countability #SAT = 5

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 6

https://link.springer.com/chapter/10.1007/978-3-642-81955-1_28
https://www.sciencedirect.com/science/article/pii/S0747717186800281

CNF Transformations

Distributive Θ = D

apply laws of logic (De Mor-
gan’s laws and distributivity)

Tseitin Θ = T [’83]

abbreviate a subformula φ with
an auxiliary variable xφ ↔ φ

Plaisted-Greenbaum Θ = PG [’86]

abbreviate a subformula φ with
an auxiliary variable xφ → φ

D ↔/ (U ∧ H)

D−→(D∨(U∧H))∧(¬D∨¬(U∧H))

D−→{{D,U},{D,H},{¬D,¬U,¬H}}

D ↔/ (U ∧ H)

T−→ (D ↔/ x) ∧ x ↔ (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}, {¬U,¬H, x}}

D ↔/ (U ∧ H)

PG−−→ (D ↔/ x) ∧ x → (U ∧ H)

D−→ {{D, x}, {¬D,¬x}, {¬x,U},
{¬x,H}}

3 equivalence
SAT 3, #SAT = 4

3 easy to implement

5 exponential complexity

3 quasi-equivalence
SAT 3, #SAT = 4

3 linear complexity

5 take care of new variables

3 equi-assignability SAT 3

3 linear complexity < T

5 equi-countability #SAT = 5

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 6

https://link.springer.com/chapter/10.1007/978-3-642-81955-1_28
https://www.sciencedirect.com/science/article/pii/S0747717186800281

Evaluation

Research Questions

RQ 1 efficiency of CNF transformations?

RQ 2 CNF transformation → efficiency of analyses?

RQ 3 CNF transformation → correctness of analyses?

Experimental Setup

• 22 configurable software systems

• 3 CNF transformation tools

• 23 SAT and #SAT solvers

.kconfig

KConfigReader

KClause

8 FOSS systems

.xml

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-Greenbaum)

Void/FMC

Dead/FC

Core

SAT Solver

#SAT Solver

Stage 1: Formula Extraction Stage 2: CNF Transformation Stage 3: Automated Analysis

10 FOSS, 4 industrial systems

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 7

Evaluation

Research Questions

RQ 1 efficiency of CNF transformations?

RQ 2 CNF transformation → efficiency of analyses?

RQ 3 CNF transformation → correctness of analyses?

Experimental Setup

• 22 configurable software systems

• 3 CNF transformation tools

• 23 SAT and #SAT solvers

.kconfig

KConfigReader

KClause

8 FOSS systems

.xml

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-Greenbaum)

Void/FMC

Dead/FC

Core

SAT Solver

#SAT Solver

Stage 1: Formula Extraction Stage 2: CNF Transformation Stage 3: Automated Analysis

10 FOSS, 4 industrial systems

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 7

Evaluation

Research Questions

RQ 1 efficiency of CNF transformations?

RQ 2 CNF transformation → efficiency of analyses?

RQ 3 CNF transformation → correctness of analyses?

Experimental Setup

• 22 configurable software systems

• 3 CNF transformation tools

• 23 SAT and #SAT solvers

.kconfig

KConfigReader

KClause

8 FOSS systems

.xml

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-Greenbaum)

Void/FMC

Dead/FC

Core

SAT Solver

#SAT Solver

Stage 1: Formula Extraction Stage 2: CNF Transformation Stage 3: Automated Analysis

10 FOSS, 4 industrial systems

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 7

Efficiency of CNF Transformations (RQ 1) and Analyses (RQ 2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ 1: D often fails,
tools differ significantly

RQ 2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ 2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 8

Efficiency of CNF Transformations (RQ 1) and Analyses (RQ 2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ 1: D often fails,
tools differ significantly

RQ 2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ 2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 8

Efficiency of CNF Transformations (RQ 1) and Analyses (RQ 2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ 1: D often fails,
tools differ significantly

RQ 2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ 2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 8

Efficiency of CNF Transformations (RQ 1) and Analyses (RQ 2)

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%
0.1

1.0

10.0

100.0

Transformation Void Core/Dead Feature Model Cardinality Feature Cardinality

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool FeatureIDE KConfigReader Z3

RQ 1: D often fails,
tools differ significantly

RQ 2 (SAT): almost all calls succeed,
solve time varies by factor 0.31–16.27

RQ 2 (#SAT): 81.6% of calls succeed,
solve time varies by factor 0.11–32.7

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 8

Correctness of #SAT-Based Analyses (RQ 3)

100.0% < 100 90.2% < 100 100.0% < 100

1

10

100

FeatureIDE KConfigReader Z3
CNF Transformation Tool

M
od

el
 C

ou
nt

 (
lo

g1
0,

 r
el

. t
o

Z
3)

Analysis FC FMC

RQ 3

• with PG , ≈ 70% of #SAT calls return
incorrect results

• incorrect by factor ≈ 3 (median)

• incorrect by factor ≈ 1077 (worst)

Our Recommendations

RQ 1 D for small, T for large models

RQ 2 largely depends on the model
⇒ future work

RQ 3 do not use PG for #SAT

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 9

Correctness of #SAT-Based Analyses (RQ 3)

100.0% < 100 90.2% < 100 100.0% < 100

1

10

100

FeatureIDE KConfigReader Z3
CNF Transformation Tool

M
od

el
 C

ou
nt

 (
lo

g1
0,

 r
el

. t
o

Z
3)

Analysis FC FMC
RQ 3

• with PG , ≈ 70% of #SAT calls return
incorrect results

• incorrect by factor ≈ 3 (median)

• incorrect by factor ≈ 1077 (worst)

Our Recommendations

RQ 1 D for small, T for large models

RQ 2 largely depends on the model
⇒ future work

RQ 3 do not use PG for #SAT

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 9

Correctness of #SAT-Based Analyses (RQ 3)

100.0% < 100 90.2% < 100 100.0% < 100

1

10

100

FeatureIDE KConfigReader Z3
CNF Transformation Tool

M
od

el
 C

ou
nt

 (
lo

g1
0,

 r
el

. t
o

Z
3)

Analysis FC FMC
RQ 3

• with PG , ≈ 70% of #SAT calls return
incorrect results

• incorrect by factor ≈ 3 (median)

• incorrect by factor ≈ 1077 (worst)

Our Recommendations

RQ 1 D for small, T for large models

RQ 2 largely depends on the model
⇒ future work

RQ 3 do not use PG for #SAT

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 9

Conclusion

The Impact of CNF Transformations on Feature-Model Analyses

Distributive

apply laws of logic

Tseitin

abbreviate φ with xφ ↔ φ

Plaisted-Greenbaum

abbreviate φ with xφ → φ

3 equivalence

3 easy to implement

5 exponential complexity

3 quasi-equivalence

3 linear complexity

5 take care of new variables

3 equi-assignability

3 linear complexity

5 equi-countability

FeatureIDE

often fails on large models

Z3

succeeds correctly on all models

KConfigReader

often incorrect for #SAT calls

Tseitin or not Tseitin?

⇒ Yes!

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Conclusion

The Impact of CNF Transformations on Feature-Model Analyses

Distributive

apply laws of logic

Tseitin

abbreviate φ with xφ ↔ φ

Plaisted-Greenbaum

abbreviate φ with xφ → φ

3 equivalence

3 easy to implement

5 exponential complexity

3 quasi-equivalence

3 linear complexity

5 take care of new variables

3 equi-assignability

3 linear complexity

5 equi-countability

FeatureIDE

often fails on large models

Z3

succeeds correctly on all models

KConfigReader

often incorrect for #SAT calls

Tseitin or not Tseitin?

⇒ Yes!

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

Conclusion

The Impact of CNF Transformations on Feature-Model Analyses

Distributive

apply laws of logic

Tseitin

abbreviate φ with xφ ↔ φ

Plaisted-Greenbaum

abbreviate φ with xφ → φ

3 equivalence

3 easy to implement

5 exponential complexity

3 quasi-equivalence

3 linear complexity

5 take care of new variables

3 equi-assignability

3 linear complexity

5 equi-countability

FeatureIDE

often fails on large models

Z3

succeeds correctly on all models

KConfigReader

often incorrect for #SAT calls

Tseitin or not Tseitin? ⇒ Yes!

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 10

find out more:

https://github.com/ekuiter/tseitin-or-not-tseitin

https://github.com/ekuiter/tseitin-or-not-tseitin

.kconfig
(8)

KConfigReader

KClause

KConfig models (8 FOSS systems)

.model
(8)

.kclause
(8)

.model
(8)

.xml
(14)

FeatureIDE
(Distributive)

Z3
(Tseitin)

KConfigReader
(Plaisted-

Greenbaum)

.smtlib2
(30)

.model
(30)

.dimacs
(30)

.dimacs
(25)

.dimacs
(18)

.dimacs
(511)

Void/FMC

Dead/FC

Core

SAT Solver for
Void/Dead/Core

(18)

#SAT Solver for
FMC/FC

(5)

Stage 1: Formula Extraction
Result: 30 feature models as .model and .xml files

Stage 2: CNF Transformation
Result: 73 / 90 formulas in CNF as .dimacs files

Stage 3: Automated Analysis
Result: 9176 / 9198 SAT calls, 1192 / 1460 #SAT calls

Feature diagrams (10 FOSS, 4 industrial systems) 3 features

.dimacs
(292)

12 timeouts

5 timeouts

22 timeouts

268 timeouts

0 timeouts

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 12

60.0% 59.6%59.3%60.0% 60.0% 83.3% 58.4%56.0%83.3% 83.3% 100.0% 82.7%80.0%100.0% 100.0%

100.0% 100.0%100.0%100.0% 100.0% 100.0% 99.8%99.3%100.0% 100.0% 100.0% 100.0%100.0%100.0% 100.0%
< 100< 100 < 100< 100< 100

0.1

1.0

10.0

100.0

Transformation Void Core/Dead FMC FC
Algorithm

A
lg

or
ith

m
 R

un
tim

e
(lo

g1
0,

 r
el

. t
o

Z
3)

CNF Transformation Tool aa aa aaFeatureIDE KConfigReader Z3

Elias Kuiter et al. Tseitin or not Tseitin? – The Impact of CNF Transformations on Feature-Model Analyses 13

